To determine the correctness of the given statements, let's analyze each one regarding kinetic theory and properties of gases:
After analyzing both statements with theoretical backing:
Thus, the correct answer is: Both Statement I and Statement II are true.
The mean free path (\(\lambda\)) of gas molecules is given by:
\[\lambda = \frac{RT}{\sqrt{2} \pi d^2 N_A P}.\]
Here, \(\lambda \propto \frac{1}{d^2}\), verifying Statement (I).
The average kinetic energy of gas molecules is:
\[KE = \frac{f}{2} nRT,\]
where \(KE \propto T\), confirming Statement (II).
Thus, both Statement I and Statement II are correct.

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
