The mean free path (\(\lambda\)) of gas molecules is given by:
\[\lambda = \frac{RT}{\sqrt{2} \pi d^2 N_A P}.\]
Here, \(\lambda \propto \frac{1}{d^2}\), verifying Statement (I).
The average kinetic energy of gas molecules is:
\[KE = \frac{f}{2} nRT,\]
where \(KE \propto T\), confirming Statement (II).
Thus, both Statement I and Statement II are correct.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: