Step 1: Analyze Statement I. The velocity \( \vec{v} \) is given by: \[ \vec{v} = \frac{d\vec{s}}{dt}. \] Integrating both sides with respect to time: \[ \int d\vec{s} = \int \vec{v} \, dt. \] The area under the velocity-time (\( \vec{v} \)-\( t \)) graph gives displacement. Hence, Statement I is true.
Step 2: Analyze Statement II. The acceleration \( \vec{a} \) is given by: \[ \vec{a} = \frac{d\vec{v}}{dt}. \] Integrating both sides with respect to time: \[ \int d\vec{v} = \int \vec{a} \, dt. \] The area under the acceleration-time (\( \vec{a} \)-\( t \)) graph gives the change in velocity. Hence, Statement II is also true.
Final Answer: Both statements are: \[ \boxed{\text{True.}} \]
A block of mass 2 kg is tied to one end of a 2 m long metal wire of 1.0 mm² area of cross-section and rotated in a vertical circle such that the tension in the wire is zero at the highest point. If the maximum elongation in the wire is 2 mm, the Young's modulus of the metal is:
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
Consider the following molecules:
The order of rate of hydrolysis is: