Step 1: Analyze Statement I. The velocity \( \vec{v} \) is given by: \[ \vec{v} = \frac{d\vec{s}}{dt}. \] Integrating both sides with respect to time: \[ \int d\vec{s} = \int \vec{v} \, dt. \] The area under the velocity-time (\( \vec{v} \)-\( t \)) graph gives displacement. Hence, Statement I is true.
Step 2: Analyze Statement II. The acceleration \( \vec{a} \) is given by: \[ \vec{a} = \frac{d\vec{v}}{dt}. \] Integrating both sides with respect to time: \[ \int d\vec{v} = \int \vec{a} \, dt. \] The area under the acceleration-time (\( \vec{a} \)-\( t \)) graph gives the change in velocity. Hence, Statement II is also true.
Final Answer: Both statements are: \[ \boxed{\text{True.}} \]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :

The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?

For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: