Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. \text{In the light of the above statements, choose the correct answer from the options given below:}
- Assertion (A) is true: When a gas is adiabatically compressed to half its initial volume, the temperature decreases. This is a result of the first law of thermodynamics and the fact that no heat is exchanged in an adiabatic process.
- Reason (R) is also true: Free expansion of an ideal gas is an irreversible and adiabatic process.
However, it is not the correct explanation of Assertion (A) because free expansion does not involve compression or a change in volume as described in Assertion (A). Free expansion involves no work and no change in internal energy.
Final Answer: Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
For the circuit shown above, the equivalent gate is:
Find the equivalent resistance between two ends of the following circuit:
The circuit consists of three resistors, two of \(\frac{r}{3}\) in series connected in parallel with another resistor of \(r\).
The voltage across a 5Ω resistor is given as V = 200 sin(100πt). Find out the time required for current through io it to change from\(\frac{i_0}{2}\) to i0 [ i0 is peak current]