Let's analyze the assertion and reason given in the question:
From the analysis above, we can conclude:
Therefore, the most appropriate answer is: Both (A) and (R) are true and (R) is the correct explanation of (A).
Explanation of Assertion (A):
In aqueous solutions, $\text{Cr}^{2+}$ acts as a reducing agent and is oxidised to $\text{Cr}^{3+}$. This is because $\text{Cr}^{3+}$ has a stable $d^3$ electronic configuration. Conversely, $\text{Mn}^{3+}$ acts as an oxidising agent and is reduced to $\text{Mn}^{2+}$, which has a stable half-filled $d^5$ electronic configuration.
Explanation of Reason (R):
The half-filled electronic configuration provides extra stability due to symmetrical distribution of electrons and exchange energy. This explains why $\text{Cr}^{3+}$ and $\text{Mn}^{2+}$ are more stable compared to their respective other oxidation states.
Conclusion:
Both Assertion (A) and Reason (R) are true. The reason given (R) correctly explains why $\text{Cr}^{2+}$ is reducing and $\text{Mn}^{3+}$ is oxidising, as it is related to the stability of the resulting electronic configurations.
200 cc of $x \times 10^{-3}$ M potassium dichromate is required to oxidise 750 cc of 0.6 M Mohr's salt solution in acidic medium. Here x = ______ .

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 