The analysis of the molecules \(\text{NH}_3\) and \(\text{NF}_3\) is as follows:
Step 1: Structure and dipole moment of \(\text{NH}_3\)
\(\text{NH}_3\) has a pyramidal shape due to the presence of one lone pair on the nitrogen atom.
- The dipole moments of the \(\text{N–H}\) bonds and the lone pair point in the same direction, leading to a higher resultant dipole moment.
Step 2: Structure and dipole moment of \(\text{NF}_3\)
\(\text{NF}_3\) also has a pyramidal shape, but the \(\text{N–F}\) bonds are highly electronegative.
- The dipole moment of the lone pair on nitrogen is opposite to the resultant dipole moment of the \(\text{N–F}\) bonds, which reduces the overall dipole moment.
Step 3: Comparison of dipole moments
- The dipole moment of \(\text{NH}_3\) is approximately \(1.47 \, \text{D}\), while that of \(\text{NF}_3\) is approximately \(0.80 \, \text{D}\).
- This confirms that \(\text{NH}_3\) has a greater dipole moment than \(\text{NF}_3\).
Step 4: Validating the statements
- Assertion (A): True, because \(\text{NH}_3\) has a higher dipole moment than \(\text{NF}_3\).
- Reason (R): True, as the lone pair’s dipole in \(\text{NH}_3\) aligns with the bond dipoles, while in \(\text{NF}_3\), it opposes them.
- \((R)\) is the correct explanation of \((A)\).
Final Answer: (1).
From the given following (A to D) cyclic structures, those which will not react with Tollen's reagent are : 
Compound 'P' undergoes the following sequence of reactions : (i) NH₃ (ii) $\Delta$ $\rightarrow$ Q (i) KOH, Br₂ (ii) CHCl₃, KOH (alc), $\Delta$ $\rightarrow$ NC-CH₃. 'P' is : 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 