Let the smaller number = \( x \), and the larger = \( y \), where \( y>x \).
We subtract half the smaller from both:
- Smaller becomes: \( x - \frac{x}{2} = \frac{x}{2} \)
- Larger becomes: \( y - \frac{x}{2} \)
Given:
\[
y - \frac{x}{2} = 3 \left( \frac{x}{2} \right)
y - \frac{x}{2} = \frac{3x}{2}
y = \frac{3x}{2} + \frac{x}{2} = \frac{4x}{2} = 2x
\]
\[
\boxed{y : x = 2 : 1}
\]