To solve the problem, we need to find the value of \( x^2 + \frac{1}{x^2} \), given that \( x + \frac{1}{x} = 3 \).
- Algebraic Identity: We use the identity: \[ \left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \] - This identity allows us to relate the square of a sum to the sum of squares.
\[ x + \frac{1}{x} = 3 \]
Use the identity: \[ \left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \] Substitute the given value: \[ 3^2 = x^2 + \frac{1}{x^2} + 2 \Rightarrow 9 = x^2 + \frac{1}{x^2} + 2 \] \[ x^2 + \frac{1}{x^2} = 9 - 2 = 7 \]
The value of \( x^2 + \frac{1}{x^2} \) is 7.
Pick the CORRECT eigenvalue(s) of the matrix [A] from the following choices.
\[ [A] = \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix} \]