Let \( X \) denote the number of defective items in the sample.
| \(x\) | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| \( P(x) \) | \( \frac{7}{15} \) | \( \frac{5}{12} \) | \( \frac{5}{12} \) | \( \frac{1}{12} \) |
| \( x_i^2 \) | 0 | 1 | 4 | 9 |
| \( P(x_i^2) \) | \( 0 \) | \( \frac{5}{12} \) | \( \frac{20}{12} \) | \( \frac{9}{12} \) |
The mean \( \mu \) is given by:
\[ \mu = \sum P(x_i) \cdot x_i = \frac{18}{12} = \frac{3}{2} \]
Calculate \( \sum P(x_i^2) \):
\[ \sum P(x_i^2) = \frac{34}{12} \]
The variance \( \sigma^2 \) is given by:
\[ \sigma^2 = \sum P(x_i^2) - \mu^2 \]
\[ \sigma^2 = \frac{34}{12} - \left( \frac{3}{2} \right)^2 \]
\[ \sigma^2 = \frac{34}{12} - \frac{9}{4} = \frac{34}{12} - \frac{27}{12} = \frac{7}{12} \]
Now, calculate \( 96\sigma^2 \):
\[ 96\sigma^2 = 96 \times \frac{7}{12} = 56 \]
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.