Let \( X \) denote the number of defective items in the sample.
\(x\) | 0 | 1 | 2 | 3 |
---|---|---|---|---|
\( P(x) \) | \( \frac{7}{15} \) | \( \frac{5}{12} \) | \( \frac{5}{12} \) | \( \frac{1}{12} \) |
\( x_i^2 \) | 0 | 1 | 4 | 9 |
\( P(x_i^2) \) | \( 0 \) | \( \frac{5}{12} \) | \( \frac{20}{12} \) | \( \frac{9}{12} \) |
The mean \( \mu \) is given by:
\[ \mu = \sum P(x_i) \cdot x_i = \frac{18}{12} = \frac{3}{2} \]
Calculate \( \sum P(x_i^2) \):
\[ \sum P(x_i^2) = \frac{34}{12} \]
The variance \( \sigma^2 \) is given by:
\[ \sigma^2 = \sum P(x_i^2) - \mu^2 \]
\[ \sigma^2 = \frac{34}{12} - \left( \frac{3}{2} \right)^2 \]
\[ \sigma^2 = \frac{34}{12} - \frac{9}{4} = \frac{34}{12} - \frac{27}{12} = \frac{7}{12} \]
Now, calculate \( 96\sigma^2 \):
\[ 96\sigma^2 = 96 \times \frac{7}{12} = 56 \]
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: