\( \text{A tower subtends angles a, 2a, and 3a respectively at points A, B, and C, which are lying on a horizontal line through the foot of the tower. Then }\) \( \frac{AB}{BC} \) \(\text{ is equal to:}\)
If \( \cos^2(10^\circ) \cos(20^\circ) \cos(40^\circ) \cos(50^\circ) \cos(70^\circ) = \alpha + \frac{\sqrt{3}}{16} \cos(10^\circ) \), then \( 3\alpha^{-1} \) is equal to:
The maximum value of $\sin(x) + \sin(x + 1)$ is $k \cos^{\frac{1}{2}}$ Then the value of $k$ is:
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
Gas | CO₂ | Ar | HCHO | CH₄ |
---|---|---|---|---|
\(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.