Four holes of radius \(5\) cm are cut from a thin square plate of \(20\) cm side and mass \(1\) kg. The moment of inertia of the remaining portion about the \(Z\)-axis is:
Area mass density: \[ \sigma = \frac{M}{16R^2} \quad (\because {Area} = 4R \times 4R = 16R^2) \]
Mass of each hole: \[ m_1 = \sigma \pi R^2 = \frac{M}{16R^2} \pi R^2 = \frac{\pi M}{16} \]
Distance between center of plate and center of hole: \[ x = \frac{\sqrt{(2R)^2 + (2R)^2}}{2} = \frac{2\sqrt{2}R}{2} = \sqrt{2} R \]
Moment of inertia of one hole about the Z-axis: \[ I_1 = \frac{1}{2} m_1 R^2 + m_1 x^2 = \frac{5\pi}{32} M R^2 \]
Moment of inertia of whole plate about the Z-axis: \[ I = \frac{M (4R)^2}{6} = \frac{8}{3} M R^2 \]
Required moment of inertia: \[ I_0 = I - 4 I_1 = \left[ \frac{8}{3} - 4 \left( \frac{5\pi}{32} \right) \right] M R^2 \] \[ I_0 = \left[ \frac{8}{3} - \frac{5\pi}{8} \right] M R^2 \]
Given: \[ R = 5 { cm}, \quad M = 1 { kg} \]
Final Calculation: \[ I_0 = \left[ \frac{8}{3} - \frac{5\pi}{8} \right] \times 1 \times 25 \times 10^{-4} \] \[ I_0 = 0.0017 { kg} \cdot {m}^2 \]
A metal plate of area 10-2m2 rests on a layer of castor oil, 2 × 10-3m thick, whose viscosity coefficient is 1.55 Ns/m2. The approximate horizontal force required to move the plate with a uniform speed of 3 × 10-2ms-1 is: