>
Exams
>
Engineering Mathematics
>
Linear Algebra
>
for the matrix begin bmatrix 2 0 0 0 2 0 0 0 2 end
Question:
For the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ which of the following is not an Eigen Vector
Show Hint
Eigenvectors must be non-zero vectors. The zero vector never satisfies the eigenvector equation in a meaningful way.
AP PGECET - 2024
AP PGECET
Updated On:
May 6, 2025
\( (1,0,0) \)
\( (0,1,0) \)
\( (0,0,1) \)
\( (0,0,0) \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Let the given matrix be $B = \begin{bmatrix} 2 & 0 & 0
0 & 2 & 0
0 & 0 & 2 \end{bmatrix}$. An eigenvector $v$ of a matrix $B$ is a non-zero vector such that $Bv = \lambda v$ for some scalar $\lambda$ (the eigenvalue). For option (A): $B \begin{bmatrix} 1
0
0 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 0 \times 0 + 0 \times 0
0 \times 1 + 2 \times 0 + 0 \times 0
0 \times 1 + 0 \times 0 + 2 \times 0 \end{bmatrix} = \begin{bmatrix} 2
0
0 \end{bmatrix} = 2 \begin{bmatrix} 1
0
0 \end{bmatrix}$. So, $(1,0,0)$ is an eigenvector with eigenvalue $\lambda = 2$. For option (B): $B \begin{bmatrix} 0
1
0 \end{bmatrix} = \begin{bmatrix} 2 \times 0 + 0 \times 1 + 0 \times 0
0 \times 0 + 2 \times 1 + 0 \times 0
0 \times 0 + 0 \times 1 + 2 \times 0 \end{bmatrix} = \begin{bmatrix} 0
2
0 \end{bmatrix} = 2 \begin{bmatrix} 0
1
0 \end{bmatrix}$. So, $(0,1,0)$ is an eigenvector with eigenvalue $\lambda = 2$. For option (C): $B \begin{bmatrix} 0
0
1 \end{bmatrix} = \begin{bmatrix} 2 \times 0 + 0 \times 0 + 0 \times 1
0 \times 0 + 2 \times 0 + 0 \times 1
0 \times 0 + 0 \times 0 + 2 \times 1 \end{bmatrix} = \begin{bmatrix} 0
0
2 \end{bmatrix} = 2 \begin{bmatrix} 0
0
1 \end{bmatrix}$. So, $(0,0,1)$ is an eigenvector with eigenvalue $\lambda = 2$. For option (D): The zero vector $(0,0,0)$ cannot be an eigenvector because eigenvectors must be non-zero vectors by definition.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Linear Algebra
Which of the following statements are correct?
If \[ A = \begin{pmatrix} p & q \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix}, \] then
(A) \[ B^n = \begin{pmatrix} 1 & nq \\ 0 & 1 \end{pmatrix} \]
(B) \[ A^n = \begin{pmatrix} p^n & q\frac{p^n-1}{p-1} \\ 0 & 1 \end{pmatrix}, \; \text{if } p \neq 1 \]
(C) \[ AB = \begin{pmatrix} p & pq+q \\ 0 & 1 \end{pmatrix} \]
(D) \[ B^{n-1} = \begin{pmatrix} 1 & (n+1)q \\ 0 & 1 \end{pmatrix} \]
(E) \[ AB^n = \begin{pmatrix} p & (np+1)q \\ 0 & 1 \end{pmatrix} \]
Choose the correct answer from the options given below:
CUET (PG) - 2025
Mathematics
Linear Algebra
View Solution
If the matrix \[ A = \begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \] satisfies the matrix equation:
CUET (PG) - 2025
Mathematics
Linear Algebra
View Solution
If the rank of matrix \[ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 7 & \lambda \end{pmatrix} \] is 2, then the value of \(\lambda\) is:
CUET (PG) - 2025
Mathematics
Linear Algebra
View Solution
The system of equations
x + 2y + z = 6
x + 4y + 3z = 10
x + 4y + \(\lambda\)z = \(\mu\)
is inconsistent if
CUET (PG) - 2025
Mathematics
Linear Algebra
View Solution
The roots of the equation \( x^4 - 20x^3 + 140x^2 - 400x + 384 = 0 \) are in
CUET (PG) - 2025
Mathematics
Linear Algebra
View Solution
View More Questions
Questions Asked in AP PGECET exam
A number is selected randomly from each of the following two sets:
{1, 2, 3, 4, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 7, 8, 9}
What is the probability that the sum of the numbers is 9?
AP PGECET - 2025
Probability and Statistics
View Solution
The ratio of the ages of A and B is 5:3. After 6 years, their ages will be in the ratio 6:4. What is the current age of A?
AP PGECET - 2025
Ratio and Proportion
View Solution
________ function is performed by data input/capture subsystem of GIS.
AP PGECET - 2025
Geographic Information System - GIS
View Solution
Consider the system of equations:
\[ x + 2y - z = 3 \\ 2x + 4y - 2z = 7 \\ 3x + 6y - 3z = 9 \]
Which of the following statements is true about the system?
AP PGECET - 2025
Linear Algebra
View Solution
The multiple access method used in Global Positioning Systems is ________.
AP PGECET - 2025
Digital Electronics and Logic Gates
View Solution
View More Questions