>
Exams
>
Mathematics
>
Determinants
>
for the matrix a bmatrix 1 1 1 1 2 3 2 1 3 bmatrix
Question:
For the matrix
\(A=\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}\)
show that
\(A^3−6A^2+5A+11I=O\)
.Hence,find A−1.
CBSE CLASS XII
Updated On:
Sep 7, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
\(A=\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}\)
\(A^2=\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}\)
\(=\begin{bmatrix}1+1+2& 1+2-1& 1-3+3\\ 1+2-6& 1+4+3& 1-6-9\\ 2-1+6& 2-2-3& 2+3+9\end{bmatrix}=\begin{bmatrix}4&2&1\\ -3&8&-14\\ 7&-3&14\end{bmatrix}\)
\(A^3=\begin{bmatrix}4&2&1\\ -3&8&-14\\ 7&-3&14\end{bmatrix}\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}\)
\(=\begin{bmatrix}4+2+2& 4+4-1& 4-6+3\\ -3+8-28& -3+16+14& -3-24-42\\ 7-3+28& 7-6-14& 7+9+12\end{bmatrix}\)
\(=\begin{bmatrix}8&7&1\\ -23& 27& -69\\ 32& -13& 58\end{bmatrix}\)
therefore
\(A^3−6A^2+5A+11I\)
\(=\begin{bmatrix}8&7&1\\ -23& 27& -69\\ 32& -13& 58\end{bmatrix}-6\begin{bmatrix}4&2&1\\ -3&8&-14 \\7&-3&14\end{bmatrix}+5\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}+11\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\)
\(=\begin{bmatrix}8&7&1\\ -23& 27& -69\\ 32& -13& 58\end{bmatrix}-\begin{bmatrix}24&12&6\\ -18&48&-84 \\42&-18&84\end{bmatrix}+\begin{bmatrix}5&5&5\\ 5&10&-15\\ 10&-5&15\end{bmatrix}+\begin{bmatrix}11&0&0\\ 0&11&0\\ 0&0&11\end{bmatrix}\)
\(=\begin{bmatrix}24& 12& 6\\ -18& 48& -84\\ 42& -18& 84\end{bmatrix}-\begin{bmatrix}24& 12& 6 \\-18& 48& -84\\ 42& -18& 84\end{bmatrix}\)
\(=0\)
Thus
\(A^3−6A^2+5A+11I=0\)
\((AAA)A^{-1}-6(AA)A^{-1}+5AA^{-1}+11IA^{-1}=0\)
[post multipying by
\(A^{-1} as |A|≠0\)
]
\(\implies AA(AA^{-1})-6A(AA^{-1})+5(AA^{-1})=-11(IA^{-1})\)
\(=>A^2-6A+5I=-11A^{-1}\)
\(\implies A^{-1}= \frac{-1}{11}(A^2-6A+5I) ...(1)\)
Now
\(A^2-6A+5I\)
\(=\begin{bmatrix}4&2&1\\ -3&8&-14\\ 7&-3&14\end{bmatrix}-6\begin{bmatrix}1&1&1\\ 1&2&-3\\ 2&-1&3\end{bmatrix}+5\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\)
\(=\begin{bmatrix}4&2&1\\ -3&8&-14\\ 7&-3&14\end{bmatrix}-\begin{bmatrix}6&6&6\\ 6&12&-18\\ 12&-6&18\end{bmatrix}+\begin{bmatrix}5&0&0\\ 0&5&0\\ 0&0&5\end{bmatrix}\)
\(=\begin{bmatrix}9&2&1\\ -3& 13& -14\\ 7& -3& 19\end{bmatrix}-\begin{bmatrix}6&6&6\\ 6& 12& -18\\ 12& -6& 18\end{bmatrix}\)
\(=\begin{bmatrix}3&-4&-5\\ -9&1&4\\ -5&3&1\end{bmatrix}\)
Form equation (1) we have
\(A^{-1}=\frac{-1}{11}\begin{bmatrix}3&-4&-5\\ -9&1&4\\ -5&3&1\end{bmatrix}\)
\(=\frac{1}{11}\begin{bmatrix}-3&4&5\\ 9&-1&-4\\ 5&-3&-1\end{bmatrix}\)
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Determinants
If \[ f(x) = \begin{vmatrix} x^3 & 2x^2 + 1 & 1 + 3x \\ 3x^2 + 2 & 2x & x^3 + 6 \\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} \] for all \( x \in \mathbb{R} \), then \( 2f(0) + f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let \( A \) be a \( 3 \times 3 \) matrix and \( \det(A) = 2 \). If
\(n = \det(\text{adj}(\text{adj}(\ldots(\text{adj}(A))\ldots)))\)
with adjoint applied 2024 times, then the remainder when \( n \) is divided by 9 is equal to
\(\_\_\_\_\_.\)
JEE Main - 2024
Mathematics
Determinants
View Solution
If \( \sin\left(\frac{y}{x}\right) = \log_e |x| + \frac{\alpha}{2} \) is the solution of the differential equation \[x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x\]and \( y(1) = \frac{\pi}{3} \), then \( \alpha^2 \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
If \[ f(x) = \begin{vmatrix} 2 \cos^4 x & 2 \sin^4 x & 3 + \sin^2 2x \\ 3 + 2 \cos^4 x & 2 \sin^4 x & \sin^2 2x \\ 2 \cos^4 x & 3 + 2 \sin^4 x & \sin^2 2x \end{vmatrix} \] then \( \frac{1}{5} f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let $A =\left[ a _{i j}\right], a _{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$ .
The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is _____.
JEE Main - 2023
Mathematics
Determinants
View Solution
View More Questions
Questions Asked in CBSE CLASS XII exam
Find the inverse of each of the matrices, if it exists.
\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
For what values of x,
\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)
\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)
=O?
CBSE CLASS XII - 2023
Matrices
View Solution
Find the inverse of each of the matrices,if it exists
\(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
What is the Planning Process?
CBSE CLASS XII - 2023
Planning process steps
View Solution
Find the inverse of each of the matrices,if it exists.
\(\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
View More Questions
Notes on Determinants
Determinants Mathematics
Determinant of a Matrix Mathematics
Determinant Mathematics
Consistent Systems of Linear Equations Mathematics
NCERT Solutions for Class 12 Maths Chapter 4 Determinants
Determinants And Matrices Mathematics