From the given options the correct answer is option (B): 8
The area of the quadrilateral having vertices as (1,2), (5,6), (7,6), (-1,-6) is?
The foot of perpendicular from the origin $O$ to a plane $P$ which meets the co-ordinate axes at the points $A , B , C$ is $(2, a , 4), a \in N$ If the volume of the tetrahedron $OABC$ is 144 unit $^3$, then which of the following points is NOT on $P$ ?
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
Three-dimensional space is also named 3-space or tri-dimensional space.
It is a geometric setting that carries three values needed to set the position of an element. In Mathematics and Physics, a sequence of ‘n’ numbers can be acknowledged as a location in ‘n-dimensional space’. When n = 3 it is named a three-dimensional Euclidean space.
The Distance Formula Between the Two Points in Three Dimension is as follows;
The distance between two points P1 and P2 are (x1, y1) and (x2, y2) respectively in the XY-plane is expressed by the distance formula,
Read More: Coordinates of a Point in Three Dimensions