Question:

For non-negative integers n, let $f\left(n\right) = \frac{\displaystyle\sum^{n}_{k = 1}sin\left(\frac{k+1}{n+2}\pi\right) sin \left(\frac{k+2}{n+2}\pi\right)}{\displaystyle\sum^{n}_{k = 1} sin^{2}\left(\frac{k+1}{n+2}\pi\right)}$ Assuming $cos^{-1}x$ takes values in $\left[0, \pi\right]$, which of the following options is/are correct?

Updated On: Jun 14, 2022
  • f(4) = $\frac{\sqrt{3}}{2}$
  • $lim_{n\to\infty} f\left(n\right) = \frac{1}{2}$
  • If $\alpha = tan \left(cos^{-1}f\left(6\right)\right),$ then $\alpha^{2} +2\alpha -1 = 0$
  • $sin \left(7 \,cos^{-1} f\left(5\right)\right) = 0$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$f \left(n\right)=\frac{\displaystyle \sum_{k=1}^n\left(cos\left(\frac{\pi}{n+2}\right)-cos\left(\frac{2k+3}{n+2}\right)\pi\right)}{\displaystyle \sum_{k=1}^n\left(1-cos\left(\frac{2k+2}{n+2}\right)\pi\right)}$
$f \left(n\right)=\frac{\left(n+1\right)cos\left(\frac{\pi}{n+2}\right)-\left(\displaystyle \sum_{k=1}^ncos\left(\frac{2k+3}{n+2}\right)\pi\right)}{\left(n+1\right)-\left(\displaystyle \sum_{k=1}^ncos\left(\frac{2k+2}{n+2}\right)\pi\right)}$
$f \left(n\right)=\frac{\left(n+1\right)cos \frac{\pi}{n+2}-\left(\frac{sin \left(\frac{\left(n+1\right)\pi}{n+2}\right)}{sin \left(\frac{\pi}{n+2}\right)}.cos \left(\frac{n+3}{n+2}\right)\pi\right)}{\left(n+1\right)-\left(\frac{sin\left(\frac{\left(n+1\right)\pi\pi}{n+2}\right)}{sin \left(\frac{\pi}{n+2}\right)}.cos \left(\frac{2\left(n+2\right)\pi}{2\left(n+2\right)}\right)\right)}$
$f \left(n\right)=\frac{\left(n+1\right)cos\left(\frac{\pi}{n+2}\right)+cos\left(\frac{\pi}{n+2}\right)}{\left(n+1\right)+1} \Rightarrow g\left(x\right)=cos\left(\frac{\pi}{n+2}\right)$
$\left(A\right) sin\left(7\,cos^{-1}\, \frac{\pi}{7}\right)=sin\,\pi=0$
$\left(B\right) f \left(4\right)=cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
$\left(C\right)$ $\displaystyle \lim_{n \to \infty}$ $cos\left(\frac{\pi}{n+2}\right)=1$
$\left(D\right) \alpha=tan\left(cos^{-1}\,cos \frac{\pi}{8}\right)=\sqrt{2}-1 \Rightarrow \alpha+1 \sqrt{2}$
$\alpha^{2}+2\alpha-1=0$
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Limits

A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.

If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).