We know:
\[ \cot^{-1} 3 + \cot^{-1} 4 = \tan^{-1} \left( \frac{3 \times 4 - 1}{3 + 4} \right) = \tan^{-1} \left( \frac{12 - 1}{7} \right) = \tan^{-1} \left( \frac{11}{7} \right). \]
Adding \(\cot^{-1} 5\):
\[ \tan^{-1} \left( \frac{11}{7} \right) + \cot^{-1} 5 = \tan^{-1} \left( \frac{\frac{11}{7} \times 5 - 1}{\frac{11}{7} + 5} \right) = \tan^{-1} \left( \frac{\frac{55}{7} - 1}{\frac{11}{7} + 5} \right). \]
Simplify:
\[ = \tan^{-1} \left( \frac{48}{46} \right) = \tan^{-1} \left( \frac{24}{23} \right). \]
Adding \(\cot^{-1} n\):
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Using the identity:
\[ \cot^{-1} a + \cot^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \]
we rewrite:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Simplify further:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{4}. \]
Using the tangent addition formula:
\[ \tan \left( \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) \right) = 1. \]
This implies:
\[ \frac{\frac{24}{23} + \frac{1}{n}}{1 - \frac{24}{23} \times \frac{1}{n}} = 1. \]
Simplify the numerator and denominator:
\[ \frac{\frac{24n + 23}{23n}}{\frac{n - 24}{23n}} = 1. \]
Cancel \(23n\) and solve: \[ \frac{24n + 23}{n - 24} = 1. \]
Cross-multiply: \[ 24n + 23 = n - 24. \]
Simplify: \[ 23n = 47. \]
Thus: \[ n = 47. \]
We are asked to find the value of \( n \in \mathbb{N} \) that satisfies the equation \( \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4} \).
To solve this equation involving inverse trigonometric functions, we use the following key identities:
1. The relationship between \( \cot^{-1} x \) and \( \tan^{-1} x \):
\[ \cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right) \quad \text{for } x > 0 \]
2. The addition formula for \( \tan^{-1} x \):
\[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left(\frac{a+b}{1-ab}\right) \quad \text{for } ab < 1 \]
3. The subtraction formula for \( \tan^{-1} x \):
\[ \tan^{-1} a - \tan^{-1} b = \tan^{-1} \left(\frac{a-b}{1+ab}\right) \quad \text{for } ab > -1 \]
We also use the standard value \( \tan^{-1}(1) = \frac{\pi}{4} \).
Step 1: Convert all the \( \cot^{-1} \) terms into \( \tan^{-1} \) terms using the identity \( \cot^{-1} x = \tan^{-1}(1/x) \).
The given equation is:
\[ \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4} \]
Converting to \( \tan^{-1} \):
\[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 2: Combine the first two terms, \( \tan^{-1}(1/3) + \tan^{-1}(1/4) \), using the addition formula.
\[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{4}}{1 - \frac{1}{3} \cdot \frac{1}{4}}\right) = \tan^{-1}\left(\frac{\frac{4+3}{12}}{1 - \frac{1}{12}}\right) = \tan^{-1}\left(\frac{\frac{7}{12}}{\frac{11}{12}}\right) = \tan^{-1}\left(\frac{7}{11}\right) \]
The equation now becomes:
\[ \tan^{-1}\left(\frac{7}{11}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 3: Combine the result from Step 2 with the third term, \( \tan^{-1}(1/5) \).
\[ \tan^{-1}\left(\frac{7}{11}\right) + \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{7}{11} + \frac{1}{5}}{1 - \frac{7}{11} \cdot \frac{1}{5}}\right) = \tan^{-1}\left(\frac{\frac{35+11}{55}}{1 - \frac{7}{55}}\right) = \tan^{-1}\left(\frac{\frac{46}{55}}{\frac{48}{55}}\right) = \tan^{-1}\left(\frac{46}{48}\right) = \tan^{-1}\left(\frac{23}{24}\right) \]
The equation is now simplified to:
\[ \tan^{-1}\left(\frac{23}{24}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 4: Rearrange the equation and use the value \( \frac{\pi}{4} = \tan^{-1}(1) \).
\[ \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} - \tan^{-1}\left(\frac{23}{24}\right) \] \[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}(1) - \tan^{-1}\left(\frac{23}{24}\right) \]
Step 5: Apply the subtraction formula for \( \tan^{-1} \) to the right side of the equation.
\[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}\left(\frac{1 - \frac{23}{24}}{1 + 1 \cdot \frac{23}{24}}\right) \] \[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}\left(\frac{\frac{24-23}{24}}{\frac{24+23}{24}}\right) = \tan^{-1}\left(\frac{\frac{1}{24}}{\frac{47}{24}}\right) = \tan^{-1}\left(\frac{1}{47}\right) \]
Step 6: Equate the arguments of the \( \tan^{-1} \) function to solve for \( n \).
\[ \frac{1}{n} = \frac{1}{47} \] \[ n = 47 \]
The value of \( n \) is 47.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero.
In the light of the above statements, choose the most appropriate answer from the options given below: