We know:
\[ \cot^{-1} 3 + \cot^{-1} 4 = \tan^{-1} \left( \frac{3 \times 4 - 1}{3 + 4} \right) = \tan^{-1} \left( \frac{12 - 1}{7} \right) = \tan^{-1} \left( \frac{11}{7} \right). \]
Adding \(\cot^{-1} 5\):
\[ \tan^{-1} \left( \frac{11}{7} \right) + \cot^{-1} 5 = \tan^{-1} \left( \frac{\frac{11}{7} \times 5 - 1}{\frac{11}{7} + 5} \right) = \tan^{-1} \left( \frac{\frac{55}{7} - 1}{\frac{11}{7} + 5} \right). \]
Simplify:
\[ = \tan^{-1} \left( \frac{48}{46} \right) = \tan^{-1} \left( \frac{24}{23} \right). \]
Adding \(\cot^{-1} n\):
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Using the identity:
\[ \cot^{-1} a + \cot^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \]
we rewrite:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Simplify further:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{4}. \]
Using the tangent addition formula:
\[ \tan \left( \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) \right) = 1. \]
This implies:
\[ \frac{\frac{24}{23} + \frac{1}{n}}{1 - \frac{24}{23} \times \frac{1}{n}} = 1. \]
Simplify the numerator and denominator:
\[ \frac{\frac{24n + 23}{23n}}{\frac{n - 24}{23n}} = 1. \]
Cancel \(23n\) and solve: \[ \frac{24n + 23}{n - 24} = 1. \]
Cross-multiply: \[ 24n + 23 = n - 24. \]
Simplify: \[ 23n = 47. \]
Thus: \[ n = 47. \]