We know:
\[ \cot^{-1} 3 + \cot^{-1} 4 = \tan^{-1} \left( \frac{3 \times 4 - 1}{3 + 4} \right) = \tan^{-1} \left( \frac{12 - 1}{7} \right) = \tan^{-1} \left( \frac{11}{7} \right). \]
Adding \(\cot^{-1} 5\):
\[ \tan^{-1} \left( \frac{11}{7} \right) + \cot^{-1} 5 = \tan^{-1} \left( \frac{\frac{11}{7} \times 5 - 1}{\frac{11}{7} + 5} \right) = \tan^{-1} \left( \frac{\frac{55}{7} - 1}{\frac{11}{7} + 5} \right). \]
Simplify:
\[ = \tan^{-1} \left( \frac{48}{46} \right) = \tan^{-1} \left( \frac{24}{23} \right). \]
Adding \(\cot^{-1} n\):
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Using the identity:
\[ \cot^{-1} a + \cot^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \]
we rewrite:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Simplify further:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{4}. \]
Using the tangent addition formula:
\[ \tan \left( \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) \right) = 1. \]
This implies:
\[ \frac{\frac{24}{23} + \frac{1}{n}}{1 - \frac{24}{23} \times \frac{1}{n}} = 1. \]
Simplify the numerator and denominator:
\[ \frac{\frac{24n + 23}{23n}}{\frac{n - 24}{23n}} = 1. \]
Cancel \(23n\) and solve: \[ \frac{24n + 23}{n - 24} = 1. \]
Cross-multiply: \[ 24n + 23 = n - 24. \]
Simplify: \[ 23n = 47. \]
Thus: \[ n = 47. \]
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)