We know:
\[ \cot^{-1} 3 + \cot^{-1} 4 = \tan^{-1} \left( \frac{3 \times 4 - 1}{3 + 4} \right) = \tan^{-1} \left( \frac{12 - 1}{7} \right) = \tan^{-1} \left( \frac{11}{7} \right). \]
Adding \(\cot^{-1} 5\):
\[ \tan^{-1} \left( \frac{11}{7} \right) + \cot^{-1} 5 = \tan^{-1} \left( \frac{\frac{11}{7} \times 5 - 1}{\frac{11}{7} + 5} \right) = \tan^{-1} \left( \frac{\frac{55}{7} - 1}{\frac{11}{7} + 5} \right). \]
Simplify:
\[ = \tan^{-1} \left( \frac{48}{46} \right) = \tan^{-1} \left( \frac{24}{23} \right). \]
Adding \(\cot^{-1} n\):
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Using the identity:
\[ \cot^{-1} a + \cot^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \]
we rewrite:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}. \]
Simplify further:
\[ \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{4}. \]
Using the tangent addition formula:
\[ \tan \left( \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) \right) = 1. \]
This implies:
\[ \frac{\frac{24}{23} + \frac{1}{n}}{1 - \frac{24}{23} \times \frac{1}{n}} = 1. \]
Simplify the numerator and denominator:
\[ \frac{\frac{24n + 23}{23n}}{\frac{n - 24}{23n}} = 1. \]
Cancel \(23n\) and solve: \[ \frac{24n + 23}{n - 24} = 1. \]
Cross-multiply: \[ 24n + 23 = n - 24. \]
Simplify: \[ 23n = 47. \]
Thus: \[ n = 47. \]
We are asked to find the value of \( n \in \mathbb{N} \) that satisfies the equation \( \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4} \).
To solve this equation involving inverse trigonometric functions, we use the following key identities:
1. The relationship between \( \cot^{-1} x \) and \( \tan^{-1} x \):
\[ \cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right) \quad \text{for } x > 0 \]
2. The addition formula for \( \tan^{-1} x \):
\[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left(\frac{a+b}{1-ab}\right) \quad \text{for } ab < 1 \]
3. The subtraction formula for \( \tan^{-1} x \):
\[ \tan^{-1} a - \tan^{-1} b = \tan^{-1} \left(\frac{a-b}{1+ab}\right) \quad \text{for } ab > -1 \]
We also use the standard value \( \tan^{-1}(1) = \frac{\pi}{4} \).
Step 1: Convert all the \( \cot^{-1} \) terms into \( \tan^{-1} \) terms using the identity \( \cot^{-1} x = \tan^{-1}(1/x) \).
The given equation is:
\[ \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4} \]
Converting to \( \tan^{-1} \):
\[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 2: Combine the first two terms, \( \tan^{-1}(1/3) + \tan^{-1}(1/4) \), using the addition formula.
\[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{4}}{1 - \frac{1}{3} \cdot \frac{1}{4}}\right) = \tan^{-1}\left(\frac{\frac{4+3}{12}}{1 - \frac{1}{12}}\right) = \tan^{-1}\left(\frac{\frac{7}{12}}{\frac{11}{12}}\right) = \tan^{-1}\left(\frac{7}{11}\right) \]
The equation now becomes:
\[ \tan^{-1}\left(\frac{7}{11}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 3: Combine the result from Step 2 with the third term, \( \tan^{-1}(1/5) \).
\[ \tan^{-1}\left(\frac{7}{11}\right) + \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{7}{11} + \frac{1}{5}}{1 - \frac{7}{11} \cdot \frac{1}{5}}\right) = \tan^{-1}\left(\frac{\frac{35+11}{55}}{1 - \frac{7}{55}}\right) = \tan^{-1}\left(\frac{\frac{46}{55}}{\frac{48}{55}}\right) = \tan^{-1}\left(\frac{46}{48}\right) = \tan^{-1}\left(\frac{23}{24}\right) \]
The equation is now simplified to:
\[ \tan^{-1}\left(\frac{23}{24}\right) + \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} \]
Step 4: Rearrange the equation and use the value \( \frac{\pi}{4} = \tan^{-1}(1) \).
\[ \tan^{-1}\left(\frac{1}{n}\right) = \frac{\pi}{4} - \tan^{-1}\left(\frac{23}{24}\right) \] \[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}(1) - \tan^{-1}\left(\frac{23}{24}\right) \]
Step 5: Apply the subtraction formula for \( \tan^{-1} \) to the right side of the equation.
\[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}\left(\frac{1 - \frac{23}{24}}{1 + 1 \cdot \frac{23}{24}}\right) \] \[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}\left(\frac{\frac{24-23}{24}}{\frac{24+23}{24}}\right) = \tan^{-1}\left(\frac{\frac{1}{24}}{\frac{47}{24}}\right) = \tan^{-1}\left(\frac{1}{47}\right) \]
Step 6: Equate the arguments of the \( \tan^{-1} \) function to solve for \( n \).
\[ \frac{1}{n} = \frac{1}{47} \] \[ n = 47 \]
The value of \( n \) is 47.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.