The correct answer is : 2.712 = .770 - \(\frac{.058}{2}\log[\frac{Fe^{2+}}{Fe^{3+}}]^2\)-.058 = .-058 \(\log\frac{[Fe^{2+}]}{[Fe^{3+}]}\)\(\frac{Fe^{2+}}{Fe^{3+}}=10=t\)\(\frac{t}{5}=2\)