The correct answer is : 2
.712 = .770 - \(\frac{.058}{2}\log[\frac{Fe^{2+}}{Fe^{3+}}]^2\)
-.058 = .-058 \(\log\frac{[Fe^{2+}]}{[Fe^{3+}]}\)
\(\frac{Fe^{2+}}{Fe^{3+}}=10=t\)
\(\frac{t}{5}=2\)
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32