Question:

For \( \alpha, \beta \in \left( 0, \frac{\pi}{2} \right) \), let \( 3 \sin(\alpha + \beta) = 2 \sin(\alpha - \beta) \) and a real number \( k \) be such that \( \tan \alpha = k \tan \beta \). Then the value of \( k \) is equal to:

Updated On: Mar 20, 2025
  • \( -\frac{2}{3} \)
  • –5
  • \( \frac{2}{3} \)
  • 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given that

\(3 \sin(\alpha + \beta) = 2 \sin(\alpha - \beta)\)

and a real number \(k\) such that \(\tan \alpha = k \tan \beta\).

Expanding \(\sin(\alpha + \beta)\) and \(\sin(\alpha - \beta)\) using trigonometric identities:

\(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,\)

\(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.\)

Substituting these into the given equation:

\(3(\sin \alpha \cos \beta + \cos \alpha \sin \beta) = 2(\sin \alpha \cos \beta - \cos \alpha \sin \beta).\)

Expanding both sides:

\(3 \sin \alpha \cos \beta + 3 \cos \alpha \sin \beta = 2 \sin \alpha \cos \beta - 2 \cos \alpha \sin \beta.\)

Collecting terms involving \(\sin \alpha \cos \beta\) and \(\cos \alpha \sin \beta\), we get:

\(3 \sin \alpha \cos \beta - 2 \sin \alpha \cos \beta = -2 \cos \alpha \sin \beta - 3 \cos \alpha \sin \beta.\)

Simplifying this:

\(\sin \alpha \cos \beta = -5 \cos \alpha \sin \beta.\)

Dividing both sides by \(\cos \alpha \cos \beta\) (assuming \(\cos \alpha \cos \beta \neq 0\)), we get:

\(\tan \alpha = -5 \tan \beta.\)

Therefore, the value of \(k\) is:

\(k = -5.\)

Was this answer helpful?
0
0