Given that
\(3 \sin(\alpha + \beta) = 2 \sin(\alpha - \beta)\)
and a real number \(k\) such that \(\tan \alpha = k \tan \beta\).
Expanding \(\sin(\alpha + \beta)\) and \(\sin(\alpha - \beta)\) using trigonometric identities:
\(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,\)
\(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.\)
Substituting these into the given equation:
\(3(\sin \alpha \cos \beta + \cos \alpha \sin \beta) = 2(\sin \alpha \cos \beta - \cos \alpha \sin \beta).\)
Expanding both sides:
\(3 \sin \alpha \cos \beta + 3 \cos \alpha \sin \beta = 2 \sin \alpha \cos \beta - 2 \cos \alpha \sin \beta.\)
Collecting terms involving \(\sin \alpha \cos \beta\) and \(\cos \alpha \sin \beta\), we get:
\(3 \sin \alpha \cos \beta - 2 \sin \alpha \cos \beta = -2 \cos \alpha \sin \beta - 3 \cos \alpha \sin \beta.\)
Simplifying this:
\(\sin \alpha \cos \beta = -5 \cos \alpha \sin \beta.\)
Dividing both sides by \(\cos \alpha \cos \beta\) (assuming \(\cos \alpha \cos \beta \neq 0\)), we get:
\(\tan \alpha = -5 \tan \beta.\)
Therefore, the value of \(k\) is:
\(k = -5.\)
The given graph illustrates: