For all x ∈ [0, 2024] assume that f (x) is differentiable. f (0) = −2 and f ′(x) ≥ 5. Then the least possible value of f (2024) is:
Step 1: Apply the Mean Value Theorem.
Since f(x) is differentiable on [0, 2024], by the Mean Value Theorem, there exists a c \(\in\) (0, 2024) such that:
f'(c) = \(\frac{f(2024) - f(0)}{2024 - 0}\)
f'(c) = \(\frac{f(2024) - (-2)}{2024}\)
f'(c) = \(\frac{f(2024) + 2}{2024}\)
Step 2: Use the given condition f'(x) \(\ge\) 5.
Since f'(x) \(\ge\) 5 for all x \(\in\) [0, 2024], we have f'(c) \(\ge\) 5.
\(\frac{f(2024) + 2}{2024} \ge 5\)
Step 3: Solve for f(2024).
f(2024) + 2 \(\ge\) 5 \(\times\) 2024
f(2024) + 2 \(\ge\) 10120
f(2024) \(\ge\) 10120 - 2
f(2024) \(\ge\) 10118
Step 4: Determine the least possible value of f(2024).
The least possible value of f(2024) is 10118.
Therefore, the least possible value of f(2024) is 10,118.
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))