Step 1: Identify the structure.
We observe that the denominator is $x^{2}+x+2$. Its derivative is $(2x+1)$, which matches the numerator.
Step 2: Apply substitution.
Let $t = x^{2}+x+2 \ $\Rightarrow$ \ dt = (2x+1)\, dx$.
Step 3: Rewrite integral.
\[
\int \frac{2x+1}{x^{2}+x+2}\, dx = \int \frac{dt}{t}
\]
Step 4: Evaluate.
\[
\int \frac{dt}{t} = \log|t|+c = \log(x^{2}+x+2)+c
\]
Step 5: Conclusion.
The required result is $\log(x^{2}+x+2)+c$.
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $
and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $