For the overall rate constant:
\[ K = \frac{K_1 \cdot K_2}{K_3} = \frac{A_1 \cdot A_2}{A_3} \cdot e^{\left(\frac{E_{a1} + E_{a2} - E_{a3}}{RT}\right)} \]
Therefore,
\[ K = \frac{A \cdot e^{-E_a/RT}}{A_3} = \frac{A_1 A_2}{A_3} \cdot e^{\left(\frac{E_{a1} + E_{a2} - E_{a3}}{RT}\right)} \]
Given:
\[ E_a = E_{a1} + E_{a2} - E_{a3} = 40 + 50 - 60 = 30 \, \text{kJ/mol} \]
So, the correct answer is: 30
A first-order reaction is 25% complete in 30 minutes. How much time will it take for the reaction to be 75% complete?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: