The rate of formation of B is:
\[ \frac{d[\text{B}]}{dt} = k_1[\text{A}] - k_2[\text{B}]. \]
For the rate of formation of B to be zero:
\[ \frac{d[\text{B}]}{dt} = 0. \]
Substitute:
\[ k_1[\text{A}] - k_2[\text{B}] = 0. \]
Rearrange to find [B]:
\[ k_1[\text{A}] = k_2[\text{B}] \implies [\text{B}] = \frac{k_1}{k_2}[\text{A}]. \]
Thus, the concentration of B is:
\[ [\text{B}] = \left(\frac{k_1}{k_2}\right)[\text{A}]. \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32