The rate of formation of B is:
\[ \frac{d[\text{B}]}{dt} = k_1[\text{A}] - k_2[\text{B}]. \]
For the rate of formation of B to be zero:
\[ \frac{d[\text{B}]}{dt} = 0. \]
Substitute:
\[ k_1[\text{A}] - k_2[\text{B}] = 0. \]
Rearrange to find [B]:
\[ k_1[\text{A}] = k_2[\text{B}] \implies [\text{B}] = \frac{k_1}{k_2}[\text{A}]. \]
Thus, the concentration of B is:
\[ [\text{B}] = \left(\frac{k_1}{k_2}\right)[\text{A}]. \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)