The binding energy equation is essential in nuclear physics to understand stability
Step 1: Analyze the terms in the binding energy equation.
$E_B = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(A-2Z)^2}{A} + \delta(A, Z)$.
- Volume term: $a_v A$
- Surface energy term: $-a_s A^{2/3}$
- Coulomb term: $-a_c \frac{Z(Z-1)}{A^{1/3}}$
- Asymmetry term: $-a_a \frac{(A-2Z)^2}{A}$
- Pairing term: $\delta(A, Z)$
Step 2: Match the options with the equation.
- C and D are directly supported by the equation.
Final Answer: The most appropriate choice is option (3).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: