Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A: Work done in moving a test charge between two points inside a uniformly charged spherical shell is zero, no matter which path is chosen.
Reason R: Electrostatic potential inside a uniformly charged spherical shell is constant and is same as that on the surface of the shell.
In the light of the above statements, choose the correct answer from the options given below
Two infinite identical charged sheets and a charged spherical body of charge density ' $\rho$ ' are arranged as shown in figure. Then the correct relation between the electrical fields at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D points is:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
Electrostatics is the branch of physics that deals with the study of stationary electric charges and their interactions. It involves the study of electric fields, electric charges, electric potential, and electric potential energy.
Electric charges are either positive or negative, and like charges repel while opposite charges attract. Electric charges can be generated by the transfer of electrons from one material to another, by contact between charged objects, or by induction, which involves the creation of an electric field that causes a separation of charges in a conductor.
Electric fields are regions in space around a charged object where an electric force is exerted on other charged objects. The strength of the electric field depends on the distance from the charged object and the magnitude of the charge.
Electric potential is a measure of the work required to move a unit charge from one point to another in an electric field. Electric potential energy is the energy that a charged object possesses due to its position in an electric field.
The behavior of electric charges and fields is described by Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.
Electrostatics has numerous applications in technology, including in the design of electrical and electronic devices, such as capacitors and semiconductors. It also plays a vital role in everyday life, such as in the generation and distribution of electric power and in the functioning of the human nervous system.