Step 1: Using the binomial formulas.
- Mean of a binomial distribution is given by:
\[
E(X) = n p.
\]
- Variance of a binomial distribution is:
\[
V(X) = n p (1 - p).
\]
Step 2: Substituting given values.
\[
4 = n p, \quad 2 = n p (1 - p).
\]
Step 3: Expressing \( p \) in terms of \( n \).
\[
p = \frac{4}{n}.
\]
Step 4: Solving for \( n \).
\[
2 = n \left( \frac{4}{n} \right) (1 - \frac{4}{n}).
\]
\[
2 = 4(1 - \frac{4}{n}).
\]
\[
\frac{2}{4} = 1 - \frac{4}{n}.
\]
\[
\frac{1}{2} = 1 - \frac{4}{n}.
\]
\[
\frac{4}{n} = \frac{1}{2}.
\]
\[
n = 6.
\]
Step 5: Selecting the correct option.
Since \( n = 6 \), the correct answer is (C).