280
174
Step 1: Recall important properties.
For any square matrix \( A \) of order \( n \): \[ \text{adj}(A) = |A| A^{-1}, \quad \text{and} \quad |\text{adj}(A)| = |A|^{n-1}. \] Also, \( \text{adj}(kA) = k^{n-1}\text{adj}(A) \) for scalar \( k \).
Since \( A \) is \( 3 \times 3 \), we have \( n = 3 \).
Step 2: Compute \( \text{adj}(2A) \).
\[ \text{adj}(2A) = 2^{n-1}\text{adj}(A) = 2^2 \text{adj}(A) = 4 \text{adj}(A). \]
Step 3: Now compute \( B = \text{adj}(\text{adj}(2A)) \).
Let \( C = \text{adj}(2A) = 4 \text{adj}(A) \). Then \( B = \text{adj}(C) = \text{adj}(4 \text{adj}(A)) \). Using the property \( \text{adj}(kM) = k^{n-1}\text{adj}(M) \), we get: \[ B = 4^{2} \text{adj}(\text{adj}(A)) = 16 \, \text{adj}(\text{adj}(A)). \]
Step 4: Simplify \( \text{adj}(\text{adj}(A)) \).
For a \( 3 \times 3 \) matrix, the formula is: \[ \text{adj}(\text{adj}(A)) = |A|^{n-2} A = |A|^{1} A = |A|A. \] So: \[ B = 16(|A|A) = 16|A|A. \]
Step 5: Substitute \( |A| = \frac{1}{2} \).
\[ B = 16 \times \frac{1}{2} A = 8A. \]
Step 6: Compute \( |B| \) and \( \text{trace}(B) \).
For a scalar multiple of a matrix: \[ |kA| = k^n |A|, \quad \text{trace}(kA) = k \cdot \text{trace}(A). \] Thus: \[ |B| = |8A| = 8^3 |A| = 512 \times \frac{1}{2} = 256, \] \[ \text{trace}(B) = 8 \times \text{trace}(A) = 8 \times 3 = 24. \]
Step 7: Compute the required sum.
\[ |B| + \text{trace}(B) = 256 + 24 = 280. \]
\[ \boxed{280} \]
For a $3\times3$ matrix $A$ we have $\text{adj}(kA)=k^{2}\text{adj}(A)$ and $\text{adj}(\text{adj}(A))=|A|A$. With $|A|=\tfrac12$ and $\operatorname{tr}(A)=3$:
\[ \text{adj}(2A)=2^{2}\text{adj}(A)=4\text{adj}(A). \] Hence \[ B=\text{adj}(\text{adj}(2A))=\text{adj}(4\text{adj}(A))=4^{2}\,\text{adj}(\text{adj}(A)) =16\cdot(|A|A)=16\cdot\frac12\,A=8A. \]
Therefore \[ |B|=|8A|=8^{3}|A|=512\cdot\frac12=256,\qquad \operatorname{tr}(B)=8\operatorname{tr}(A)=8\cdot3=24. \]
Final result: \[ |B|+\operatorname{tr}(B)=256+24=\boxed{280}. \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
Given below are two statements :
Statement I : Wet cotton clothes made of cellulose based carbohydrate takes comparatively longer time to get dried than wet nylon polymer based clothes.
Statement II : Intermolecular hydrogen bonding with water molecule is more in nylon-based clothes than in the case of cotton clothes.
In the light of the above statements, choose the Correct answer from the options given below
Standard electrode potentials for a few half-cells are mentioned below:
