Standard electrode potentials for a few half-cells are mentioned below:
Step 1: Understand the cell notation format
A galvanic cell (electrochemical cell) is represented in the notation: \[ \text{Anode} \,|\, \text{Anode Solution (concentration)} \,||\, \text{Cathode Solution (concentration)} \,|\, \text{Cathode} \] where oxidation occurs at the anode and reduction occurs at the cathode.
Step 2: Identify electrode potentials
From the given table, the standard electrode potentials are:
Step 3: Determine which is oxidized and which is reduced
- Lower (more negative) standard electrode potential: Zn is more likely to lose electrons (get oxidized).
- Higher (more positive) standard electrode potential: Ag⁺ is more likely to gain electrons (get reduced).
Step 4: Assign anode and cathode
Step 5: Write the cell notation
Following the convention (Anode | Anode solution || Cathode solution | Cathode), we get: \[ \text{Zn} \,|\, \text{Zn}^{2+} (1\,\text{M}) \,||\, \text{Ag}^{+} (1\,\text{M}) \,|\, \text{Ag} \]
Final Answer:
\( \boxed{\text{Zn} \,|\, \text{Zn}^{2+} (1\,\text{M}) \,||\, \text{Ag}^{+} (1\,\text{M}) \,|\, \text{Ag}} \)
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: