Let integers \( a, b \in [-3, 3] \) be such that \( a + b \neq 0 \). \(\text{Then the number of all possible ordered pairs}\) \( (a, b) \), \(\text{for which}\) \[ \left| \frac{z - a}{z + b} \right| = 1 \quad \text{and} \quad \left| \begin{matrix} z + 1 & \omega & \omega^2 \\ \omega^2 & 1 & z + \omega \\ \omega^2 & 1 & z + \omega \end{matrix} \right| = 1, \] \(\text{is equal to:}\)