If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: