Find the values of P so the line\(\frac{1-x}{3}=\frac{7y-14}{2p}=\frac{z-3}{2}\) and \(\frac{7-7x}{3p}=\frac{y-5}{1}=\frac{6-z}{5}\) are at right angles.
The given equation can be written in the standard form as
\(\frac{x-1}{-3}=\frac{y-2}{\frac{2p}{7}}=\frac{z-3}{2}\) and \(\frac{x-1}{\frac{-3p}{7}}=\frac{y-5}{1}=\frac{6-z}{-5}\)
The direction ratios of the lines are -3 ,\(\frac{2p}{7}\), 2, and \(\frac{-3p}{7}\), 1, -5 respectively.
Two lines with direction ratios, a1, b1, c1, and a2, b2, c2, are perpendicular to each other, if a1a2+b1b2+c1c2=0
∴(-3)\(\bigg(\frac{-3p}{7}\bigg)+\bigg(\frac{2p}{7}\bigg)\)(1)+2.(-5)=0
\(\Rightarrow \frac{9p}{7}+\frac{2p}{7}=10\)
\(\Rightarrow \) 11p=70
\(\Rightarrow \) p=\(\frac{70}{11}\)
Thus, the value of P is \(\frac{70}{11}\).
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
A circular coil of diameter 15 mm having 300 turns is placed in a magnetic field of 30 mT such that the plane of the coil is perpendicular to the direction of the magnetic field. The magnetic field is reduced uniformly to zero in 20 ms and again increased uniformly to 30 mT in 40 ms. If the EMFs induced in the two time intervals are \( e_1 \) and \( e_2 \) respectively, then the value of \( e_1 / e_2 \) is:
The two straight lines, whenever intersects, form two sets of angles. The angles so formed after the intersection are;
The absolute values of angles created depend on the slopes of the intersecting lines.

It is also worth taking note, that the angle so formed by the intersection of two lines cannot be calculated if any of the lines is parallel to the y-axis as the slope of a line parallel to the y-axis is an indeterminate.
Read More: Angle Between Two Lines