Step 1: Simplify each term.
- First Term:
\[
\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right).
\]
Since \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \), the first term becomes:
\[
-\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}.
\]
- Second Term:
\[
\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = \tan^{-1}\left(\sqrt{3}\right).
\]
Since \( \tan^{-1}\left(\sqrt{3}\right) = \frac{\pi}{3} \), the second term is:
\[
\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3}.
\]
- Third Term:
\[
\tan^{-1}\left[\sin\left(-\frac{\pi}{2}\right)\right] = \tan^{-1}(-1).
\]
Since \( \tan^{-1}(-1) = -\frac{\pi}{4} \), the third term is:
\[
\tan^{-1}(-1) = -\frac{\pi}{4}.
\]
Step 2: Add the simplified terms.
Combine the three terms:
\[
-\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4}.
\]
Find a common denominator (\( 12 \)) and simplify:
\[
-\frac{\pi}{6} = -\frac{2\pi}{12}, \quad \frac{\pi}{3} = \frac{4\pi}{12}, \quad -\frac{\pi}{4} = -\frac{3\pi}{12}.
\]
Thus:
\[
-\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4} = -\frac{2\pi}{12} + \frac{4\pi}{12} - \frac{3\pi}{12} = -\frac{\pi}{12}.
\]
Step 3: Conclusion.
The value of the expression is:
\[
\boxed{-\frac{\pi}{12}}.
\]