Question:

If \( (\cos x)^y = (\sin y)^x \) then \( \frac{dy}{dx} \) is:

Updated On: Nov 26, 2024
  • \( \frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y} \)
  • \( \frac{\log_e \sin y + y \tan x}{\log_e \cos x + x \cos y} \)
  • \( \frac{\log_e \sin y + y \tan x}{\log_e \cos x - x \cot y} \)
  • \( \frac{\log_e \cos x - x \cos y}{\log_e \sin y + y \tan x} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are given:

\[ (\cos x)^y = (\sin y)^x. \]

Take the natural logarithm on both sides:

\[ y \log_e(\cos x) = x \log_e(\sin y). \]

Differentiate both sides with respect to \(x\) using implicit differentiation:

\[ \frac{d}{dx} \left[ y \log_e(\cos x) \right] = \frac{d}{dx} \left[ x \log_e(\sin y) \right]. \]

Using the product rule on both sides:

\[ \frac{dy}{dx} \log_e(\cos x) + y \times \frac{d}{dx} \left[ \log_e(\cos x) \right] = \log_e(\sin y) + x \times \frac{d}{dx} \left[ \log_e(\sin y) \right]. \]

Simplify each term:

\[ \frac{dy}{dx} \log_e(\cos x) - y \tan x = \log_e(\sin y) + x \times \frac{1}{\sin y} \times \frac{dy}{dx} \cos y. \]

Reorganize terms to isolate \(\frac{dy}{dx}\):

\[ \frac{dy}{dx} \log_e(\cos x) - x \times \frac{\cos y}{\sin y} \times \frac{dy}{dx} = \log_e(\sin y) - y \tan x. \]

Factor out \(\frac{dy}{dx}\):

\[ \frac{dy}{dx} \left[ \log_e(\cos x) + x \cot y \right] = \log_e(\sin y) - y \tan x. \]

Solve for \(\frac{dy}{dx}\):

\[ \frac{dy}{dx} = \frac{\log_e(\sin y) - y \tan x}{\log_e(\cos x) + x \cot y}. \]

Thus, the correct answer is:

\[ \boxed{\frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y}}. \]

Was this answer helpful?
0
0