We are given:
\[ (\cos x)^y = (\sin y)^x. \]
Take the natural logarithm on both sides:
\[ y \log_e(\cos x) = x \log_e(\sin y). \]
Differentiate both sides with respect to \(x\) using implicit differentiation:
\[ \frac{d}{dx} \left[ y \log_e(\cos x) \right] = \frac{d}{dx} \left[ x \log_e(\sin y) \right]. \]
Using the product rule on both sides:
\[ \frac{dy}{dx} \log_e(\cos x) + y \times \frac{d}{dx} \left[ \log_e(\cos x) \right] = \log_e(\sin y) + x \times \frac{d}{dx} \left[ \log_e(\sin y) \right]. \]
Simplify each term:
\[ \frac{dy}{dx} \log_e(\cos x) - y \tan x = \log_e(\sin y) + x \times \frac{1}{\sin y} \times \frac{dy}{dx} \cos y. \]
Reorganize terms to isolate \(\frac{dy}{dx}\):
\[ \frac{dy}{dx} \log_e(\cos x) - x \times \frac{\cos y}{\sin y} \times \frac{dy}{dx} = \log_e(\sin y) - y \tan x. \]
Factor out \(\frac{dy}{dx}\):
\[ \frac{dy}{dx} \left[ \log_e(\cos x) + x \cot y \right] = \log_e(\sin y) - y \tan x. \]
Solve for \(\frac{dy}{dx}\):
\[ \frac{dy}{dx} = \frac{\log_e(\sin y) - y \tan x}{\log_e(\cos x) + x \cot y}. \]
Thus, the correct answer is:
\[ \boxed{\frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y}}. \]