Question:

Find the value of sin6 15° + sin6 75° + 6sin2 15° + sin2 75°/sin4 15° + sin4 75° + 5sin2 15° sin2 75°.

Updated On: Aug 9, 2024
  • sin 15°+sin 75°
  • 6/5
  • 1
  • sin 15°+cos 15°
  • None of the above
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let a = sin2 15°
b = sin2 75° = sin2 (90° - 15°) = cos2 15°
. So, a + b = 1.
Thus,
sin6 15° + sin6 75° + 6sin2 15° + sin2 75°/sin4 15° + sin4 75° + 5sin2 15° sin2 75° =a3+b3+6ab/a2+b2+5ab
= (a+b)(a2+b2-ab) + 6ab/(a+b)2 + 3ab
= (a+b)((a+b)2 - 3ab) + 6ab/(a+b)2 + 3ab using a + b = 1
= -3ab +6ab/3ab
= 1
Hence, option C is the correct answer.

Was this answer helpful?
0
0

Questions Asked in XAT exam

View More Questions