Lettheintegralbe:
\[
I=\int_0^{\pi/2}\frac{x}{a^2\sin^2x+b^2\cos^2x}\,dx.
\]
Usingthepropertyofdefiniteintegrals:
\[
\int_0^af(x)\,dx=\int_0^af(a-x)\,dx,
\]
wesubstitute\(x\to\pi/2-x\).Thisgives:
\[
I=\int_0^{\pi/2}\frac{\pi/2-x}{a^2\cos^2x+b^2\sin^2x}\,dx.
\]
Addingthesetwoformsof\(I\),weget:
\[
2I=\int_0^{\pi/2}\frac{x}{a^2\sin^2x+b^2\cos^2x}\,dx+\int_0^{\pi/2}\frac{\pi/2-x}{a^2\cos^2x+b^2\sin^2x}\,dx.
\]
Simplify:
\[
2I=\frac{\pi}{2}\int_0^{\pi/2}\frac{1}{a^2\sin^2x+b^2\cos^2x}\,dx.
\]
Now,let:
\[
J=\int_0^{\pi/2}\frac{1}{a^2\sin^2x+b^2\cos^2x}\,dx.
\]
Usingthestandardresultforthisintegral:
\[
J=\frac{\pi}{2ab}.
\]
Thus:
\[
2I=\frac{\pi}{2}\cdot\frac{\pi}{2ab}\quad\Rightarrow\quadI=\frac{\pi^2}{4ab}.
\]