To solve \( (1 + i)^{10} \), we can convert the complex number \( 1 + i \) into polar form and then use De Moivre's Theorem. First, express \( 1 + i \) in polar form: \[ r = \sqrt{1^2 + 1^2} = \sqrt{2} \] \[ \theta = \tan^{-1}\left( \frac{1}{1} \right) = \frac{\pi}{4} \] So, \( 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \).
Now, apply De Moivre's Theorem to \( (1 + i)^{10} \): \[ (1 + i)^{10} = \left( \sqrt{2} \right)^{10} \left( \cos \frac{10\pi}{4} + i \sin \frac{10\pi}{4} \right) \] Simplifying the powers and the angles: \[ \left( \sqrt{2} \right)^{10} = 2^5 = 32 \] \[ \frac{10\pi}{4} = 2\pi + \frac{\pi}{2} \]
Thus, \( \cos \frac{10\pi}{4} = \cos \frac{\pi}{2} = 0 \), and \( \sin \frac{10\pi}{4} = \sin \frac{\pi}{2} = 1 \).
Therefore: \[ (1 + i)^{10} = 32 \left( 0 + i \right) = 32i \] So the correct answer is (B) \( 32 \).
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
\( z_1, z_2, z_3 \) represent the vertices A, B, C of a triangle ABC respectively in the Argand plane. If
\[ |z_1 - z_2| = \sqrt{25 - 12 \sqrt{3}}, \] \[ \left|\frac{z_1 - z_3}{z_2 - z_3}\right| = \frac{3}{4}, \] \[ \text{and } \angle ACB = 30^\circ, \]
Then the area (in sq. units) of that triangle is: