(i) 2,7,12,…,to 10 terms
For this A.P., a=2, d=a2−a1=7−2=5 and n=10
We know that,
Sn=2n[2a+(n−1)d]
S10=210[2×2+(10−1)5]
S10=5[4+9×5]
S10=5×49
S10=245
(ii) −37,−33,−29,…, to 12 terms
For this A.P., a=−37, d=a2−a1=(−33)−(−37)=−33+37=4, n=12
We know that,
Sn=2n[2a+(n−1)d]
S12=212[2(−37)+(12−1)4]
S12=6[−74+11×4]
S12= 6[−74+44]
S12=6×(−30)
S12=−180
(iii) 0.6,1.7,2.8,…, to 100 terms
For this A.P., a=0.6,d=a2−a1=1.7−0.6=1.1 and n=100
We know that,
Sn=2n[2a+(n−1)d]
S100 =2100[2(0.6)+(100−1)1.1]
S100=50[1.2+99×1.1]
S100=50[1.2+108.9]
S100=50[1.2+99×1.1]
S100=50[110.1]
S100 =5505
(iv) 151,121,101,………, to 11 terms
For this A.P.,
a=151
n=11
d=a2−a1
d=121−151
d=605−4
d=601
We know that,
Sn=2n[2a+(n−1)d]
S11=211[2(151)+(11−1)601]
S11 =211[152+6010]
S11 =211[152+61]
S11 =211[304+5]
S11 =211×309
S11 =2033