Question:

Find the sum of the following APs:
  1. 2,7,12,.......,2, 7, 12, ......., to 1010 terms.
  2. 37,33,29,.......,–37, –33, –29,......., to 1212 terms.
  3. 0.6,1.7,2.8,.......,0.6, 1.7, 2.8, ......., to 100100 terms.
  4. 115,112,110,.......,\frac {1}{15}, \frac {1}{12}, \frac {1}{10}, ......., to 1111 terms.

Updated On: Nov 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) 2,7,12,,2, 7, 12 ,…, to 1010 terms
For this A.P., a=2a = 2d=a2a1=72=5d = a_2 − a_1 = 7 − 2 = 5 and n=10n = 10
We know that,
Sn=n2[2a+(n1)d]S_n = \frac n2[2a+(n-1)d]

S10=102[2×2+(101)5]S_{10} = \frac {10}{2}[2\times 2+(10-1)5]
S10=5[4+9×5]S_{10} = 5[4+9\times5]
S10=5×49S_{10} = 5\times 49
S10=245S_{10} = 245


(ii) 37,33,29,,−37, −33, −29 ,…, to 1212 terms
For this A.P., a=37a = −37d=a2a1=(33)(37)=33+37=4, n=12d = a_2 − a_1 = (−33) − (−37) = − 33 + 37 = 4,  n = 12
We know that,
Sn=n2[2a+(n1)d]S_n = \frac n2[2a+(n-1)d]

S12=122[2(37)+(121)4]S_{12} = \frac {12}{2}[2(-37)+(12-1)4]

S12=6[74+11×4]S_{12} = 6[-74+11\times4]
S12= 6[74+44]S_{12} = 6[-74+44]
S12=6×(30)S_{12} = 6\times(-30)
S12=180S_{12} = -180


(iii) 0.6,1.7,2.8,,0.6, 1.7, 2.8 ,…, to 100100 terms
For this A.P., a=0.6,d=a2a1=1.70.6=1.1a = 0.6, d = a_2 − a_1 = 1.7 − 0.6 = 1.1 and n=100n = 100
We know that,
Sn=n2[2a+(n1)d]S_n = \frac n2[2a+(n-1)d]

S100S_{100} =1002[2(0.6)+(1001)1.1]= \frac {100}{2}[2(0.6)+(100-1)1.1]
S100S_{100}=50[1.2+99×1.1]= 50[1.2+99\times1.1]
S100S_{100}=50[1.2+108.9]= 50[1.2+108.9]
S100S_{100}=50[1.2+99×1.1]= 50[1.2+99\times1.1]
S100S_{100}=50[110.1]= 50[110.1]
S100S_{100} =5505= 5505


(iv) 115,112,110,,\frac {1}{15} , \frac {1}{12} , \frac {1}{10} ,………, to 11 terms

For this A.P.,
a=115a = \frac {1}{15}
n=11n = 11
d=a2a1d = a_2-a_1

d=112115d = \frac {1}{12}-\frac {1}{15}

d=5460d = \frac {5-4}{60}

d=160d = \frac {1}{60}

We know that,

Sn=n2[2a+(n1)d]S_n = \frac n2[2a+(n-1)d]

S11=112[2(115)+(111)160]S_{11} = \frac {11}{2}[2(\frac {1}{15})+(11-1)\frac {1}{60}]

S11S_{11} =112[215+1060]= \frac {11}{2}[\frac {2}{15}+\frac {10}{60}]

S11S_{11} =112[215+16]= \frac {11}{2}[\frac {2}{15}+\frac 16]

S11S_{11} =112[4+530]= \frac {11}{2}[\frac {4+5}{30}]

S11S_{11} =112×930= \frac {11}{2} \times \frac {9}{30}

S11S_{11} =3320= \frac {33}{20}

Was this answer helpful?
0
0

Top Questions on Sum of First n Terms of an AP

View More Questions

Questions Asked in CBSE X exam

View More Questions