(i) \(2, 7, 12 ,…, \)to \(10\) terms
For this A.P., \(a = 2\), \(d = a_2 − a_1 = 7 − 2 = 5\) and \(n = 10\)
We know that,
\(S_n = \frac n2[2a+(n-1)d]\)
\(S_{10} = \frac {10}{2}[2\times 2+(10-1)5]\)
\(S_{10} = 5[4+9\times5]\)
\(S_{10} = 5\times 49\)
\(S_{10} = 245\)
(ii) \(−37, −33, −29 ,…,\) to \(12\) terms
For this A.P., \(a = −37\), \(d = a_2 − a_1 = (−33) − (−37) = − 33 + 37 = 4, n = 12\)
We know that,
\(S_n = \frac n2[2a+(n-1)d]\)
\(S_{12} = \frac {12}{2}[2(-37)+(12-1)4]\)
\(S_{12} = 6[-74+11\times4]\)
\(S_{12} = 6[-74+44]\)
\(S_{12} = 6\times(-30)\)
\(S_{12} = -180\)
(iii) \(0.6, 1.7, 2.8 ,…,\) to \(100\) terms
For this A.P., \(a = 0.6, d = a_2 − a_1 = 1.7 − 0.6 = 1.1\) and \(n = 100\)
We know that,
\(S_n = \frac n2[2a+(n-1)d]\)
\(S_{100}\) \(= \frac {100}{2}[2(0.6)+(100-1)1.1]\)
\(S_{100}\)\(= 50[1.2+99\times1.1]\)
\(S_{100}\)\(= 50[1.2+108.9]\)
\(S_{100}\)\(= 50[1.2+99\times1.1]\)
\(S_{100}\)\(= 50[110.1]\)
\(S_{100}\) \(= 5505\)
(iv) \(\frac {1}{15} , \frac {1}{12} , \frac {1}{10} ,………,\) to 11 terms
For this A.P.,
\(a = \frac {1}{15}\)
\(n = 11\)
\(d = a_2-a_1\)
\(d = \frac {1}{12}-\frac {1}{15}\)
\(d = \frac {5-4}{60}\)
\(d = \frac {1}{60}\)
We know that,
\(S_n = \frac n2[2a+(n-1)d]\)
\(S_{11} = \frac {11}{2}[2(\frac {1}{15})+(11-1)\frac {1}{60}]\)
\(S_{11}\) \(= \frac {11}{2}[\frac {2}{15}+\frac {10}{60}]\)
\(S_{11}\) \(= \frac {11}{2}[\frac {2}{15}+\frac 16]\)
\(S_{11}\) \(= \frac {11}{2}[\frac {4+5}{30}]\)
\(S_{11}\) \(= \frac {11}{2} \times \frac {9}{30}\)
\(S_{11}\) \(= \frac {33}{20}\)
| Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
|---|---|---|---|---|---|---|
| Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Leaves of the sensitive plant move very quickly in response to ‘touch’. How is this stimulus of touch communicated and explain how the movement takes place?
Read the following sources of loan carefully and choose the correct option related to formal sources of credit:
(i) Commercial Bank
(ii) Landlords
(iii) Government
(iv) Money Lende