Step 1: Let the first term and common difference be \(a\) and \(d\).
The general term of an A.P. is \(a_n = a + (n - 1)d\).
Step 2: Use the given conditions.
\[ a_2 = a + d = 14 \quad \text{(i)} \] \[ a_3 = a + 2d = 18 \quad \text{(ii)} \] Step 3: Subtract (i) from (ii).
\[ (a + 2d) - (a + d) = 18 - 14 \Rightarrow d = 4 \] Step 4: Substitute \(d = 4\) in (i).
\[ a + 4 = 14 \Rightarrow a = 10 \] Step 5: Use the sum formula of an A.P.
\[ S_n = \dfrac{n}{2}[2a + (n - 1)d] \] For \(n = 51\): \[ S_{51} = \dfrac{51}{2}[2(10) + 50(4)] \] \[ = \dfrac{51}{2}[20 + 200] = \dfrac{51}{2} \times 220 = 51 \times 110 = 5610 \] Step 6: Conclusion.
Hence, the sum of 51 terms of the A.P. is 5610.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to