Step 1: Understanding the principal value of \( \sin^{-1} \).
The principal value of \( \sin^{-1} x \) is the value of the angle \( \theta \) such that \( \sin \theta = x \) and \( \theta \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
Step 2: Applying the value.
We are given \( \sin^{-1} \left( \frac{1}{\sqrt{2}} \right) \), which corresponds to the angle \( \theta = \frac{\pi}{4} \) because \( \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \).
Step 3: Conclusion.
Thus, the principal value of \( \sin^{-1} \left( \frac{1}{\sqrt{2}} \right) \) is \( \frac{\pi}{4} \).
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
निम्नलिखित में से किसी एक विषय पर निबंध लिखिए:
(i) पर्यावरण की सुरक्षा
(ii) दुखों की उपयोगिता
(iii) विद्यार्थी और अनुशासन
(iv) राष्ट्रीय एकता और अखंडता
(v) इंटरनेट का दैनिक जीवन में अनुपयोग
परीक्षा की तैयारी की जानकारी देते हुए पिता को पत्र लिखिए।
द्वनि विस्तारक यंत्रों पर प्रतिबंध लगाने हेतु जिला सचिव महोदय को प्रार्थना पत्र लिखिए।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: पैसा पावर है। पर उसके स्वभाव में आस-पास सालों तक जमा न जमा हो तो क्या वह ताकत पावर है! पैसे को देखने के लिए बैंक-हिसाब सीट, पर माल-असबाब, मकान-कोठी तो अनदेखे भी दीखते हैं। पैसे के उस 'पेसींग पावर' के प्रयोग में ही पावर का खेल है।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: एक बार वह 'डांग' देखने श्यामनगर शेला गया। पहलवानों की कुस्ती और डांव-पेच देखकर उससे नहीं रहा गया। जवानी की मस्ती और होल की ललकारती हुई आवाज़ ने उसकी नसों में बिजली उत्पन्न कर दी। उसने बिना कुछ सोचे-समझे दंगल में 'शेर के बच्चों' को चुनौति दे दी।