Find the points on the curve y = x3 at which the slope of the tangent is equal to the Y-coordinate of the point.
The equation of the given curve is y = x3
\(\frac{dy}{dx}\)=3x2
The slope of the tangent to a curve at (x, y) is given by,
Therefore, the slope of the tangent at the point where x = 2 is given by,
dy/dx]x,y) =3x2
When the slope of the tangent is equal to the y-coordinate of the point, then y = 3x2 . Also, we have y = x3 .
∴3x2 = x3
∴ x2 (x − 3) = 0
∴ x = 0, x = 3
When x = 0, then y = 0 and when x = 3, then y = 3(3) 2 = 27.
Hence, the required points are (0, 0) and (3, 27).

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
m×n = -1
