For mutual inductance in coplanar loops:
• Use the magnetic field from the larger loop and calculate flux through the smaller loop.
• Divide flux by the current to obtain mutual inductance.
\(M = \frac{\sqrt{2} \mu_0 R^2}{L}\)
\(M = \frac{2 \sqrt{2} \mu_0 R}{L^2}\)
\(M = \frac{2 \sqrt{2} \mu_0 R^2}{L}\)
\(M = \frac{\sqrt{2} \mu_0 R}{L^2}\)
\[ \phi = M i \]
\[ \phi = (BA) \]
\[ \phi = \pi R^2 \left( \frac{4\mu_0}{4\pi} \cdot i \cdot \frac{L}{2} \right) \sqrt{2} \]
\[ \implies M = \frac{2\sqrt{2} \mu_0 R^2}{L} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: