Let A=\(\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}\)
We know that A = IA
\(\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)A
Applying \(R_1\rightarrow R_1-\frac{1}{2}R_2\), we have:
\(\begin{bmatrix} 0 & 0 \\ 4 & 2 \end{bmatrix}\)=\(\begin{bmatrix} 1 & -\frac12 \\ 0 & 1 \end{bmatrix}\)A
Now, in the above equation, we can see all the zeros in the first row of the matrix on the L.H.S. Therefore, A−1 does not exist.
If matrix \[ A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}, \] then find \( A^{-1} \).
(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.