Let A=\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)
We know that A = IA
\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 1 & -1\\ -1 & 2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\)A \((R_1\rightarrow R_1+R_2)\)
⇒ \(\begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}\)A \((R_2\rightarrow R_2+R_1)\)
⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)= \(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)A \((R_1\rightarrow R_1+R_2)\)
so A-1=\(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?