Question:

Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)

Updated On: Oct 12, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)

We know that A = IA 

\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\) 

⇒ \(\begin{bmatrix} 1 & -1\\ -1 & 2 \end{bmatrix}\)\(\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\)A      \((R_1\rightarrow R_1+R_2)\) 

⇒ \(\begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}\)A         \((R_2\rightarrow R_2+R_1)\) 

⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)\(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)A          \((R_1\rightarrow R_1+R_2)\) 

so A-1=\(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)

Was this answer helpful?
3
0