Let A=\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)
We know that A = IA
\(\begin{bmatrix} 2 & -3\\ -1 & 2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 1 & -1\\ -1 & 2 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\)A \((R_1\rightarrow R_1+R_2)\)
⇒ \(\begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}\)A \((R_2\rightarrow R_2+R_1)\)
⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)= \(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)A \((R_1\rightarrow R_1+R_2)\)
so A-1=\(\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)