Let A=\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)
We know that \(A = AI \)
\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\)=A \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}\) \((C_2\rightarrow C_2+3C_1) \)
⇒ \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\) A \(\begin{bmatrix} -2 & 3 \\ -1 & 1 \end{bmatrix}\) \((C_1\rightarrow C_1-C_2)\)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) =A \(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\) \((C_1\rightarrow \frac{1}{2}C_1)\)
\(\therefore\)A-1=\(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.