Question:

Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)

Updated On: Oct 12, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\) 

We know that \(A = AI \)

\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)

⇒ \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\)=A \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}\)    \((C_2\rightarrow C_2+3C_1) \)

⇒  \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\) A \(\begin{bmatrix} -2 & 3 \\ -1 & 1 \end{bmatrix}\)      \((C_1\rightarrow C_1-C_2)\) 

⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) =A \(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\)       \((C_1\rightarrow \frac{1}{2}C_1)\) 

\(\therefore\)A-1=\(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\)

Was this answer helpful?
0
0

Concepts Used:

Invertible matrices

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In  is an identity matrix of order n × n.

For example,

It can be observed that the determinant of the following matrices is non-zero.