Let A=\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)
We know that \(A = AI \)
\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)=A\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\)=A \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}\) \((C_2\rightarrow C_2+3C_1) \)
⇒ \(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}\) A \(\begin{bmatrix} -2 & 3 \\ -1 & 1 \end{bmatrix}\) \((C_1\rightarrow C_1-C_2)\)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) =A \(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\) \((C_1\rightarrow \frac{1}{2}C_1)\)
\(\therefore\)A-1=\(\begin{bmatrix} -1 & 3 \\ -\frac12 & 1 \end{bmatrix}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.