Let A=\(\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}\)
We know that \(A = IA\)
\(\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}\)\(=A\)\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}\)\(= A\)\(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\) \((C_1\rightarrow C_1+2C_2)\)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\)\(=A\)\(\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}\) \((C_2\rightarrow C_2+C_1)\)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)\(=A\) \(\begin{bmatrix} 1 & \frac12 \\ 2 & \frac32 \end{bmatrix}\) \((C_2\rightarrow \frac{1}{2}C_2) \)
\(\therefore A^{-1}=\) \(\begin{bmatrix} 1 & \frac12 \\ 2 & \frac32 \end{bmatrix}\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.