Question:

Find the inverse of each of the matrices, if it exists.
\(\begin{bmatrix} 3 & 10\\ 2 & 7\end{bmatrix}\)

Updated On: Oct 12, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=\(\begin{bmatrix} 3 & 10\\ 2 & 7\end{bmatrix}\) 

We know that \(A = IA \)

\(\begin{bmatrix} 3 & 10\\ 2 & 7\end{bmatrix}\)\(\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}\)

⇒ \(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)\(\begin{bmatrix} 1 & -1\\ 0 & 1\end{bmatrix}\)A       \((R_1\rightarrow R_1-R_2)\)

⇒ \(\begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix}\)\(\begin{bmatrix} 1 & -1\\ -2 & 3\end{bmatrix}\) A       \((R_2\rightarrow R_2-2R_2)\)

⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}\)\(\begin{bmatrix} 7 & -10\\ -2 & 3\end{bmatrix}\)\(A\)et      \((R_1\rightarrow R_1-3R_2)\)

\(\therefore A^{-1}=\) \(\begin{bmatrix} 7 & -10\\ -2 & 3\end{bmatrix}\)

Was this answer helpful?
0
0

Concepts Used:

Invertible matrices

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In  is an identity matrix of order n × n.

For example,

It can be observed that the determinant of the following matrices is non-zero.