Find the equations of the tangent and normal to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}\)=1at the point (x0,y0).
Find the equations of the tangent and normal to the hyperbola x2/a2-y2/b2=1 at the point (x0,y0).
Differentiating \(\frac{x^2}{a^2}-\frac{y^2}{b^2}\)=1 with respect to x, we have:
\(\frac{2x}{a^2}-\frac{2y}{b^2}\frac{dy}{dx}=0\)
\(\frac{2y}{b^2}\frac{dy}{dx}=\frac{2x}{a^2}\)
\(\frac{dy}{dx}=\frac{b^2x}{a^2x}\)
Therefore, the slope of the tangent at (x0,y0) is \(\frac{dy}{dx}\)](xo.yo)=\(\frac{b^2x_0}{a^2y_0}\).
Then, the equation of the tangent at (xo,yo) is given by,
y-y0=\(\frac{b^2x_0}{a^2yy_0}-a^2y^2_0=b^2xx_0-b^2x^2_0\)
\(b^2xx_0-a^2yy_0-b^2x^2_0+a^2y^2=0\)
\(\frac{xx_0}{a^2}-\frac{yy_0}{b^2}-1=0\)
Hence, the equation of the normal at (xo,yo) is given by,
=\(y-\frac{y_0}{a^2y_0}+\frac{(x-x)}{b^2x_0}=0\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
m×n = -1