(i) f(x) = |x|, x ∈ R
We know that:
\(|x|= \begin{cases} x, & \quad \text{if } x≥0\\ -x, & \quad \text{if } n<0 \end{cases}\)
\(∴ f(x)=-|x|= \begin{cases} -x, & \quad \text{if } x≥0\\ x, & \quad \text{if } n<0 \end{cases}\)
Since f(x) is defined for x ∈ R, the domain of f is R.
It can be observed that the range of f(x) = |x| is all real numbers except positive real numbers.
∴ The range of f is (∞, 0].
(ii) f(x)=\(\sqrt {9-x^2}\)
Since \(\sqrt {9-x^2}\) is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3, the domain of f(x) is {x : 3 ≤ x ≤ 3} or [3, 3].
For any value of x such that 3 ≤ x≤ 3, the value of f(x) will lie between 0 and 3.
∴ The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.