(i) f(x) = |x|, x ∈ R
We know that:
\(|x|= \begin{cases} x, & \quad \text{if } x≥0\\ -x, & \quad \text{if } n<0 \end{cases}\)
\(∴ f(x)=-|x|= \begin{cases} -x, & \quad \text{if } x≥0\\ x, & \quad \text{if } n<0 \end{cases}\)
Since f(x) is defined for x ∈ R, the domain of f is R.
It can be observed that the range of f(x) = |x| is all real numbers except positive real numbers.
∴ The range of f is (∞, 0].
(ii) f(x)=\(\sqrt {9-x^2}\)
Since \(\sqrt {9-x^2}\) is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3, the domain of f(x) is {x : 3 ≤ x ≤ 3} or [3, 3].
For any value of x such that 3 ≤ x≤ 3, the value of f(x) will lie between 0 and 3.
∴ The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to