(i) f(x) = |x|, x ∈ R
We know that:
\(|x|= \begin{cases} x, & \quad \text{if } x≥0\\ -x, & \quad \text{if } n<0 \end{cases}\)
\(∴ f(x)=-|x|= \begin{cases} -x, & \quad \text{if } x≥0\\ x, & \quad \text{if } n<0 \end{cases}\)
Since f(x) is defined for x ∈ R, the domain of f is R.
It can be observed that the range of f(x) = |x| is all real numbers except positive real numbers.
∴ The range of f is (∞, 0].
(ii) f(x)=\(\sqrt {9-x^2}\)
Since \(\sqrt {9-x^2}\) is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3, the domain of f(x) is {x : 3 ≤ x ≤ 3} or [3, 3].
For any value of x such that 3 ≤ x≤ 3, the value of f(x) will lie between 0 and 3.
∴ The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?