(i) Let f(x)=2x-\(\frac{3}{4}\)
f'(x)=\(\frac{d}{dx}\) (2x-\(\frac{3}{4}\))
=2\(\frac{d}{dx}\)(x) -\(\frac{d}{dx}\)(\(\frac{3}{4}\))
=2-0
=2
(ii) Let f (x)=(5x3+3x-1) (x - 1)
By Leibnitz product rule,
ƒ'(x)=(5x3 +3x−1) = \(\frac{d}{dx}\)(x −1)+(x−1) = (5x3 +3x−1)
=(5x3+3x-1)(1)+(x-1)(5.3x2+3-0)
=(5x3+3x-1)+(x-1) (15x2+3)
=5x3+3x-1+15x3+3x-15x2-3
=20x3-15x2+6x-4
(iii) Let f(x) = x-3 (5+3x)
By Leibnitz product rule,
ƒ′(x) = x-3\(\frac{d}{dx}\)(5+3x)+(5+3x)\(\frac{d}{dx}\) (x-3)
= x-3 (0+3)+(5+3x)(−3x-3-1)
=x-3(3)+(5+3x)(-3x-4)
=3x-3-15x-4-9x-3
=-6x-3-15x-4
=\({\frac{-3x^{-3}}{x}}\)(2x+5)
=\(-\frac{3}{x^4}\)(5+2x)
(iv) Let f (x) = x5(3-6x-9)
By Leibnitz product rule,
ƒ′(x) = x5-(3–6x-9)+(3–6x-9) \(\frac{d}{dx}\)(x5)
=x5 {0-6(-9)x-9-1}+(3–6x-9) (5x4)
= x5(54x-10)+15x4-30x-5
=54x-5+15x4-30x-5
= 24x-5+15x4
=\(\frac{15x^4+24}{x^5}\)
(v) Let f (x) = x4(3-4x-5)
By Leibnitz product rule,
ƒ'(x) = x-4 \(\frac{d}{dx}\)(3-4x-5)+(3-4x-5)\(\frac{d}{dx}\)(x-4)
= x-4{0-4(-5) x-5-1}+(3-4x-5)(-4)x-4-1
x-4(20x-6)+(3-4x-5)(-4x-5)
=20x-10-12x-5+16x-10
=36x-10-12x-5
=\(-\frac{12}{x^5}\) + \(\frac{36}{x^{10}}\)
(vi) Let f (x) =\(\frac{2}{x+1}-\frac{x^2}{3x-1}\)
f '(x) =\(\frac{d}{dx}\)(\(\frac{2}{x+1}\)) - \(\frac{d}{dx}\)(\(\frac{x^2}{3x-1}\))
By the quotient rule,
f'(x)=[(x+1)\(\frac{d}{dx}\)(2)-2\(\frac{d}{dx}\)(x+1) /(x+1)2]-[(3x-1)\(\frac{d}{dx}\)(x2)-x2\(\frac{d}{dx}\)(3x-1)]
=\([\frac{(x+1)(0)-2(1)}{(x+1)^2}]\)-[\(\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2}\)]
=\(-\frac{2}{(x+1)^2}\) - \([\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2}]\)
=\(-\frac{2}{(x+1)^2}\) -[\(\frac{6x^2-2x-3x^2}{(3x-1)^2}\)]
=\(-\frac{2}{(x+1)^2}\) - [\(\frac{3x^2-2x^2}{(3x-1)^2}\)]
=\(-\frac{2}{(x+1)^2}\) -x\(\frac{(3x-2)}{(3x-1)^2}\)