Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
Let \( A = \{-3,-2,-1,0,1,2,3\} \) Given: \[ 0 \le x^2 + 2y \le 4 \Rightarrow -2y \le x^2 \le 4 - 2y \] Now for different values of \( y \in A \), find the possible \( x \in A \) satisfying the condition:
So the relation \( R \) consists of the following ordered pairs: \[ R = \{ (-3,-3), (-3,3), (-2,-2), (-2,2), (-1,-2), (-1,2), (0,-2), (0,-1), (0,0), (0,1), (0,2), (1,-1), (1,0), (1,1), (2,0) \} \]
Thus, \[ l = |R| = 15 \] To make \( R \) reflexive, we must add the missing self-pairs:
From set \( A \), reflexive relation requires all \( (a,a) \in A \times A \)
Already present: \( (0,0) \)
Missing: \( (-1,-1), (2,2), (3,3) \Rightarrow m = 3 \)
\[ \therefore l + m = 15 + 3 = 18 \]
Correct answer: Option (4)
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Match List-I with List-II: List-I