The electric potential \( V \) at a point due to a point charge \( q \) is given by: \[ V = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{r}, \] where: - \( V \) is the electric potential, - \( q = 5 \times 10^{-9} \, \text{C} \) (charge), - \( r \) is the distance of the point from the charge, - \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2\text{C}^{-2} \).
Step 1: Rearrange the formula to solve for \( r \). Rearranging: \[ r = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{V}. \]
Step 2: Substitute the known values. Substitute \( V = 50 \, \text{V} \), \( q = 5 \times 10^{-9} \, \text{C} \), and \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \): \[ r = \frac{9 \times 10^9 \cdot 5 \times 10^{-9}}{50}. \]
Step 3: Simplify the calculation. \[ r = \frac{45}{50} = 0.9 \, \text{m}. \] Convert \( r \) to centimeters: \[ r = 0.9 \, \text{m} \times 100 = 90 \, \text{cm}. \]
Final Answer: The distance of \( P \) from the point charge is: \[ \boxed{90 \, \text{cm}}. \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: