The electric potential \( V \) at a point due to a point charge \( q \) is given by: \[ V = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{r}, \] where: - \( V \) is the electric potential, - \( q = 5 \times 10^{-9} \, \text{C} \) (charge), - \( r \) is the distance of the point from the charge, - \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2\text{C}^{-2} \).
Step 1: Rearrange the formula to solve for \( r \). Rearranging: \[ r = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{V}. \]
Step 2: Substitute the known values. Substitute \( V = 50 \, \text{V} \), \( q = 5 \times 10^{-9} \, \text{C} \), and \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \): \[ r = \frac{9 \times 10^9 \cdot 5 \times 10^{-9}}{50}. \]
Step 3: Simplify the calculation. \[ r = \frac{45}{50} = 0.9 \, \text{m}. \] Convert \( r \) to centimeters: \[ r = 0.9 \, \text{m} \times 100 = 90 \, \text{cm}. \]
Final Answer: The distance of \( P \) from the point charge is: \[ \boxed{90 \, \text{cm}}. \]
Choose correct graph of electric potential for uniformly charged hollow sphere.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :