The electric potential \( V \) at a point due to a point charge \( q \) is given by: \[ V = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{r}, \] where: - \( V \) is the electric potential, - \( q = 5 \times 10^{-9} \, \text{C} \) (charge), - \( r \) is the distance of the point from the charge, - \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{Nm}^2\text{C}^{-2} \).
Step 1: Rearrange the formula to solve for \( r \). Rearranging: \[ r = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{V}. \]
Step 2: Substitute the known values. Substitute \( V = 50 \, \text{V} \), \( q = 5 \times 10^{-9} \, \text{C} \), and \( \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \): \[ r = \frac{9 \times 10^9 \cdot 5 \times 10^{-9}}{50}. \]
Step 3: Simplify the calculation. \[ r = \frac{45}{50} = 0.9 \, \text{m}. \] Convert \( r \) to centimeters: \[ r = 0.9 \, \text{m} \times 100 = 90 \, \text{cm}. \]
Final Answer: The distance of \( P \) from the point charge is: \[ \boxed{90 \, \text{cm}}. \]


Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: