Find the coordinates of the point where the line through (5,1,6)and (3,4,1) crosses the YZ plane.
It is known that the equation of the line passing through the points, (x1,y1,z1) and (x2,y2,z2), is x-\(\frac{x_1}{x_2}\)-x1=y-\(\frac{y_1}{y_2}\)-y1=z-\(\frac{z_1}{z_2}\)-z1
The line passing through the points, (5,1,6), and (3,4,1) is given by,
\(\frac{x-5}{3-5}\)=\(\frac{y-1}{4-1}\)=\(\frac{z-6}{1-6}\)
⇒\(\frac{x-5}{-2}\)=\(\frac{y-1}{3}\)=\(\frac{z-6}{-5}\)=k(say)
⇒x=5-2k,y=3k+1,z=6-5k
Any point on the line is of the form (5-2k,3k+1,6-5k).
The equation of YZ-plane is x=0
Since the line passing through YZ-plane,
5-2k=0
⇒k=\(\frac{5}{2}\)
⇒3k+1
=3×\(\frac{5}{2}\)+1
=\(\frac{17}{2}\) 6-5k
=6-5×\(\frac{5}{2}\)
=\(\frac {-13}{2}\)
Therefore, the required point is (0, 17/2, -13/2).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?