Find the coordinates of the point where the line through (5,1,6)and (3,4,1) crosses the YZ plane.
It is known that the equation of the line passing through the points, (x1,y1,z1) and (x2,y2,z2), is x-\(\frac{x_1}{x_2}\)-x1=y-\(\frac{y_1}{y_2}\)-y1=z-\(\frac{z_1}{z_2}\)-z1
The line passing through the points, (5,1,6), and (3,4,1) is given by,
\(\frac{x-5}{3-5}\)=\(\frac{y-1}{4-1}\)=\(\frac{z-6}{1-6}\)
⇒\(\frac{x-5}{-2}\)=\(\frac{y-1}{3}\)=\(\frac{z-6}{-5}\)=k(say)
⇒x=5-2k,y=3k+1,z=6-5k
Any point on the line is of the form (5-2k,3k+1,6-5k).
The equation of YZ-plane is x=0
Since the line passing through YZ-plane,
5-2k=0
⇒k=\(\frac{5}{2}\)
⇒3k+1
=3×\(\frac{5}{2}\)+1
=\(\frac{17}{2}\) 6-5k
=6-5×\(\frac{5}{2}\)
=\(\frac {-13}{2}\)
Therefore, the required point is (0, 17/2, -13/2).
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.