Find the cartesian equations of the following planes:
\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\) (b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)
(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)
(a)It is given that equation of the plane is
\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector r→ is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)=z\hat k\)
Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j-z\hat k).(\hat i+\hat j-\hat k)=2\)
\(\Rightarrow \) x+y-z=2
This is the cartesian equation of the plane.
(b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector \(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)
Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j+z\hat k)=z\hat k (2\hat i+3\hat j-4\hat k)=1\)
\(\Rightarrow\) 2x+3y-4z=1
This is the cartesian equation of the plane.
(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector\(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)
Substituting the value of r→ in equation(1), we obtain
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\).\([(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)
\(\Rightarrow \) (s-2t)x+(3-t)y+(2s+t)z=15
This is the cartesian equation of the given plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
From the following information, calculate the 'Proprietary Ratio':
Using the worksheet, find out the error and its reason for the given 'VLOOKUP' syntax:
\[ \begin{array}{|c|c|c|c|} \hline \text{S. No.} & \text{Consumables} & \text{Price in FY 21-22} & \text{Price in FY 23-24} \\ \hline 1 & \text{Muskmelon} & 45 & 122 \\ 2 & \text{Watermelon} & 9 & 21 \\ 3 & \text{Squash} & 22 & 35 \\ 4 & \text{Gourd} & 47 & 68 \\ 5 & \text{Curd} & 49 & 66 \\ 6 & \text{Brisket} & 33 & 43 \\ 7 & \text{Poultry} & 88 & 96 \\ \hline \end{array} \]
(i) =VLOOKUP(B1, B4 : D6, 2, 0)
(ii) =SQRT(VLOOKUP(C2, C2 : D8, 2, 0) – 100)
(iii) =VLOOKUP(B5, B6 : D8, 1, 0)
(iv) =VLOOKUP(B3, B2 : D8, 5, 0)
(v) =VLOOKUP(B5, B3 : D8, 0, 0)
(vi) =VLOOKUP(B2, B2 : D7, 2, 0)/0
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: