Question:

Find the cartesian equations of the following planes:

\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\) (b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)

(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)

Updated On: Sep 19, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(a)It is given that equation of the plane is

\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\)...(1)

For any arbitrary point P(x,y,z) on the plane, position vector r→ is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)=z\hat k\)

Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j-z\hat k).(\hat i+\hat j-\hat k)=2\) 
\(\Rightarrow \) x+y-z=2

This is the cartesian equation of the plane.


(b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)...(1)

For any arbitrary point P(x,y,z) on the plane, position vector \(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)

Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j+z\hat k)=z\hat k (2\hat i+3\hat j-4\hat k)=1\)   
\(\Rightarrow\) 2x+3y-4z=1

This is the cartesian equation of the plane.


(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)...(1)

For any arbitrary point P(x,y,z) on the plane, position vector\(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)

Substituting the value of r→ in equation(1), we obtain
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\).\([(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)
\(\Rightarrow \) (s-2t)x+(3-t)y+(2s+t)z=15

This is the cartesian equation of the given plane.

Was this answer helpful?
0
0

Top Questions on Three Dimensional Geometry

View More Questions

Concepts Used:

Plane

A  surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely:

  • Using three non-collinear points
  • Using a point and a line not on that line
  • Using two distinct intersecting lines
  • Using two separate parallel lines

Properties of a Plane:

  • In a three-dimensional space, if there are two different planes than they are either parallel to each other or intersecting in a line.
  • A line could be parallel to a plane, intersects the plane at a single point or is existing in the plane.
  • If there are two different lines that are perpendicular to the same plane then they must be parallel to each other.
  • If there are two separate planes which are perpendicular to the same line then they must be parallel to each other.