Find the cartesian equations of the following planes:
\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\) (b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)
(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)
(a)It is given that equation of the plane is
\(\overrightarrow r.(\hat i+\hat j-\hat k)=2\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector r→ is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)=z\hat k\)
Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j-z\hat k).(\hat i+\hat j-\hat k)=2\)
\(\Rightarrow \) x+y-z=2
This is the cartesian equation of the plane.
(b) \(\overrightarrow r.(2\hat i+3\hat j-4\hat k)=1\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector \(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)
Substituting the value of \(\overrightarrow r\) in equation(1), we obtain
\((x\hat i+y\hat j+z\hat k)=z\hat k (2\hat i+3\hat j-4\hat k)=1\)
\(\Rightarrow\) 2x+3y-4z=1
This is the cartesian equation of the plane.
(c) \(\overrightarrow r.[(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)...(1)
For any arbitrary point P(x,y,z) on the plane, position vector\(\overrightarrow r\) is given by,
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\)
Substituting the value of r→ in equation(1), we obtain
\(\overrightarrow r.(x\hat i+y\hat j-z\hat k)\).\([(s-2t)\hat i+(3-t)\hat j+(2s+t)\hat k)=15\)
\(\Rightarrow \) (s-2t)x+(3-t)y+(2s+t)z=15
This is the cartesian equation of the given plane.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: